

Fairway Technologies
© Copyright 2012 Fairway Technologies, Inc. All rights reserved. Proprietary and Confidential

TDS Performance
and Capacity
Evaluation

Prepared for: SMARTER BALANCED

 Fairway Technologies, Inc.

April 27, 2016

TDS Performance and Capacity Evaluation

Fairway Technologies
© Copyright 2016 Fairway Technologies, Inc. All rights reserved.

 2

Table of Contents

Executive Summary ... 3

Scalability Testing ... 4

Scalability Requirements .. 4

Considerations ... 4

Results .. 5

Environment ... 6

Scalability Test Execution ... 11

Scalability Issues ... 14

Database Reliance .. 14

Service Components .. 18

Recommendations ... 18

Relational Database Scalability .. 18

Caching ... 20

Consolidate Database Queries .. 20

Replace Temporary Tables with Data Structures ... 20

Synchronize All Servers to Same Time Zone ... 20

Component Communication .. 21

Eventual Consistency ... 21

Content Delivery Network ... 21

Application State ... 22

Client Side Assets ... 22

Appendix A: Configuration Settings Provided by AIR: ... 23

Tomcat Configuration Options ... 23

MySQL Database Configuration Options ... 23

Appendix B: References .. 25

TDS Performance and Capacity Evaluation

Fairway Technologies
© Copyright 2016 Fairway Technologies, Inc. All rights reserved.

 3

Executive Summary

Fairway executed a series of load tests against an environment set up and configured following the

recommendations specified in the Smarter Balanced Hosting Requirements Guide. Using database

servers supported by top-tier storage services provided by Amazon Web Services (including provisioned

input/output per second, which Amazon has improved since the deployment guide was released),

Fairway could achieve 30,000 concurrent students and 1,500 test administrators (“proctors”).

To support more than 30,000 concurrent students, the Smarter Balanced Hosting Requirements Guide

recommends creating multiple TDS environments. One Test Delivery System (TDS) environment would

be deployed per 30,000 concurrent students1, with student data partitioned across several

environments.

By means of these scalability test exercises, Fairway determined that reliance upon the TDS database

server is the primary point of contention preventing the TDS from scaling beyond 30,000 concurrent

students. We discovered many examples where the application did not conform to industry best

practices. Specifically, issues related to unnecessary or overwhelmingly frequent database queries,

minimal caching and temporary tables used as data structures, can all have a significant impact on

performance between the database and application servers.

To alleviate the database contention issues, Fairway recommends moving to a MySQL database cluster,

aggressively caching static/infrequently changing data, reducing the number of queries against the

database server by consolidating queries to retrieve data and replacing temporary tables with data

structures to manipulate data in memory on the application server.

NOTE: The TDS version used in the scalability environment was retrieved from the BitBucket source

code repository and complied on December 14th, 2015.

1 AIR, Smarter Balanced Hosting Requirements Guide, pg. 16

TDS Performance and Capacity Evaluation

Fairway Technologies
© Copyright 2016 Fairway Technologies, Inc. All rights reserved.

 4

Scalability Testing

Scalability Requirements

The Smarter Balanced Hosting Requirements Guide indicates a single installation of the TDS will

support 20,000 concurrent students. The guide goes on to state the AWS input/output characteristics

(IOPS)2 as a potential performance bottleneck, citing “one concurrent student can be supported per

IOPS”3. Therefore, AIR recommends that one instance of the TDS be set up for every 20,000 students4.

To support more than 20,000 concurrent students, multiple instances of the TDS need to be created.

Multiple TDS environments will incur additional overhead; student registration must be partitioned

across multiple TDS environments by some agreed upon criteria5.

Since the release of the Smarter Balanced Hosting Requirements Guide, AWS has made some

improvements to their service. Amazon RDS instances configured for Provisioned IOPS can now support

a range of “1,000 - 30,000 IOPS”6. Previously, the maximum was 20,000 IOPS. To verify the one

concurrent student to one IOPS unit recommendation, Fairway configured an RDS instance with 30,000

IOPS.

Considerations

Understanding the database server as a potential performance bottleneck, Fairway investigated

possible performance tuning options for database servers hosted on AWS. Server CPU, RAM and

network capacity configurations were considered. Additionally, Fairway investigated storage types for

supporting input/output (I/O) operations. To measure the performance characteristics of two storage

subsystems offered by AWS, Fairway captured two sets of results during the scalability testing effort.

AWS Storage Types

AWS offers several storage subsystems to support varying performance requirements. Described below

are two popular storage subsystems used for AWS instances:

 Provisioned IOPS: “a storage type that delivers fast, predictable, and consistent throughput

performance”7

2 AWS Documentation – I/O Characteristics
3 AIR, Smarter Balanced Hosting Requirements Guide, pg. 16
4 AIR, Smarter Balanced Hosting Requirements Guide, pg. 16
5 AIR, Smarter Balanced Hosting Requirements Guide, pg. 16
6 Storage for Amazon RDS – Amazon Provisioned IOPS Storage to Improve Performance
7 Storage for Amazon RDS – Amazon RDS Provisioned IOPS Storage to Improve Performance

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-io-characteristics.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-io-characteristics.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Storage.html#USER_PIOPS
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Storage.html#USER_PIOPS

TDS Performance and Capacity Evaluation

Fairway Technologies
© Copyright 2016 Fairway Technologies, Inc. All rights reserved.

 5

 General purpose SSDs: “deliver single-digit millisecond latencies, with a base performance of

3 IOPS per Gigabyte (GB) and the ability to burst to 3,000 IOPS for extended periods of time up

to a maximum of 10,000 [provisioned IOPS]”8

One RDS server was created using the provisioned IOPS storage subsystem. Another database server

was created using general purpose solid state drives (SSD), a significantly cheaper storage mechanism.

The details of the RDS server used for each test effort can be found in TDS Database Server

Configuration Notes section (pg. 10).

Results

Below are descriptions of some major operations measured during the scalability test execution:

 Proctor - Login: A Test Administrator (TA) logs into the Proctor applications.

 Proctor – Start session: A TA begins a test session; many students connect to a session to take

their assessments.

 Proctor – Stop session: A TA ends a test session.

 Student – Log in and load assessment: The student credentials are verified, all assessments

available in the session are fetched and the student chooses the appropriate assessment

 Student – Start assessment: Student confirms they want to start the assessment, first set of

questions are fetched and displayed.

 Student – Get page content: Fetch question assets (images, audio, video, etc.) for display.

 Student – Get question group: Get the next set of questions for the assessment.

 Student – Review and submit assessment: Student has finished assessment and can submit for

scoring.

Database Server with Provisioned IOPS

Fairway conducted scalability tests using an RDS server with a three terabyte Provisioned IOPS storage

system, allowing the server to be configured for 30,000 Provisioned IOPS. With the TDS database

server configured in this manner, Fairway was able to achieve 30,000 concurrent students and 1,500

proctors. Performance results are shown in Table 1 (pg. 6). This performance is consistent with the

one concurrent student to one IOPS assessment stated in the Smarter Balanced Hosting Requirements

Guide.

8 Storage for Amazon RDS – Types of Storage

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Storage.html#Concepts.Storage

TDS Performance and Capacity Evaluation

Fairway Technologies
© Copyright 2016 Fairway Technologies, Inc. All rights reserved.

 6

Database Server with General Purpose SSD

Fairway also conducted scalability testing against a database server using general purpose SSD as its

storage subsystem. After executing the scalability test multiple times against the same environment,

Fairway was unable to achieve more than 20,000 concurrent students and 1,000 proctors. Any attempt

to execute a scalability test with more than 20,000 concurrent students resulted in a large number of

errors and very long response times.

Shown below in Table 1 are the results of some key operations that occur when students are taking

proctored assessments. All times shown below are in milliseconds.

User

Category Operation

General Purpose SSD Average

Time (in milliseconds)

Provisioned IOPS Average

Time (in milliseconds)

Proctor Login 1,490 798

Proctor Start session 103 53

Proctor Stop session 364 179

Student Login and load

assessment

27,476 4,948

Student Start assessment 21,133 6,139

Student Get page content 740 369

Student Get question group 14,427 3,876

Student Review and submit

assessment

7,129 1,433

Table 1: Scalability test results

Environment

Load Testing Suite

Fairway developed a performance load test suite that simulates a large load of concurrent students and

proctors. This performance load test suite can be updated/expanded to test well beyond the

recommended specifications described in the Smarter Balanced Hosting Requirements Guide for a

single environment.

Fairway conducted these tests using a 10-minute ramp-up time window for all proctors logging in and

beginning test sessions, and a 20-minute ramp-up time for all students taking the test session. In this

case the ramp-up time is the time window between the first and last student log in with the load

distributed evenly throughout the window.

TDS Performance and Capacity Evaluation

Fairway Technologies
© Copyright 2016 Fairway Technologies, Inc. All rights reserved.

 7

Fairway used the Apache JMeter open-source load testing framework for authoring and running the

performance tests. Figure 1 shows the JMeter scalability testing environment.

Fairway used two JMeter server nodes (referred to as “workers”) in a standard configuration to run

tests simulating up to 60,000 concurrent students. Each worker node reports metrics back to the

master so that a final comprehensive report can be created. The detailed report includes network

latency, throughput, and errors for each action taken within the test.

TDS Servers

Fairway used AWS to host the servers and applications for the scalability testing environment. Table 2

(pg. 8) displays the specifications for the servers that comprise the scalability/load testing

environment.

Figure 1: Apache JMeter distributed mode

TDS Performance and Capacity Evaluation

Fairway Technologies
© Copyright 2016 Fairway Technologies, Inc. All rights reserved.

 8

Application/Component Quantity AWS Instance Notes

OpenDJ 1 c4.8xlarge

vCPUs: 4

RAM: 60 GB

OpenAM 1 m4.xlarge

vCPUs: 4

RAM: 16 GB

ProgMan Database 1 m3.medium

vCPUs: 1

RAM: 3.75 GB

ProgMan Application 1 m3.medium

vCPUs: 1

RAM: 3.75 GB

-XX:+UseConcMarkSweepGC\

-Xms512m -Xmx2048m\

-XX:PermSize=512m\

-XX:MaxPermSize=1512m\

Permissions Database 1 m3.medium

vCPUs: 1

RAM: 3.75 GB

Permissions

Application

1 m3.xlarge

vCPUs: 4

RAM: 15 GB

-XX:+UseConcMarkSweepGC\

-Xms1024m -Xmx10240m\

-XX:PermSize=512m\

-XX:MaxPermSize=2048m\

ART Database 1 m3. xlarge

vCPUs: 4

RAM: 15 GB

ART Application 1 m3. xlarge

vCPUs: 4

RAM: 15 GB

-XX:+UseConcMarkSweepGC\

-Xms2048m -Xmx10240m\

-XX:PermSize=1024m\

-XX:MaxPermSize=2048m\

TDS Database 1 db.m4.4xlarge

vCPUs: 16

RAM: 64 GB

Amazon RDS instance with 200K tests

taken; six types of tests

TDS Application 4 m3.xlarge

vCPUs: 4

RAM: 15 GB

-XX:+UseConcMarkSweepGC\

-Xms5120m -Xmx28672m\

-XX:PermSize=512m\

-XX:MaxPermSize=2048m\

Hosts the Student, Proctor and Scoring

applications; load balanced

Table 2: AWS instances for TDS scalability testing environment

TDS Performance and Capacity Evaluation

Fairway Technologies
© Copyright 2016 Fairway Technologies, Inc. All rights reserved.

 9

Table 3 shows the AWS servers that host JMeter and the test suite created by Fairway. These servers

are used to execute the load test and provide the detailed reports needed to determine the

performance.

Application/Component Quantity AWS Instance Size Notes

Load Test Master 1 c4.8xlarge

vCPUs: 36

RAM: 60 GB

None

Load Test Worker 2 c4.8xlarge

vCPUs: 36

RAM: 60 GB

None

Table 3: AWS Instances hosting Apache JMeter

Environment Configuration Notes

All AWS instances cited above:

 Use the Ubuntu 14.04 LTS 64-bit operating system

 Use General Purpose SSDs for storage

 Are shared tenancy instances

 Host TDS applications built based on code retrieved from the BitBucket code repositories

current as of December 14, 2015

The TDS application instances cited above are placed behind a single load balancer. The load balancer

is configured for sticky sessions using the LBCookieStickinessPolicy with an expiration period of

3600 seconds (1 hour).

http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/elb-sticky-sessions.html

TDS Performance and Capacity Evaluation

Fairway Technologies
© Copyright 2016 Fairway Technologies, Inc. All rights reserved.

 10

TDS Database Server Configuration Notes

Fairway conducted the scalability testing against multiple configurations of the TDS database server,

configured as follows:

Provisioned IOPS RDS Server

 db.m4.4xlarge instance type (16 vCPUs, 64 GB RAM)

 3 TB provisioned IOPS storage

 30,000 provisioned IOPS

 MySQL configuration settings based on configuration settings provided by AIR (Appendix A, pg.

23)

General Purpose SSD RDS Server

 db.m4.4xlarge instance type (16 vCPUs, 64 GB RAM)

 100 GB general purpose SSD storage

 MySQL configuration settings based on configuration settings provided by AIR (Appendix A, pg.

23)

Environment Configuration Discrepancies

For conducting the scalability test described in this report, Fairway made every effort to follow the

recommendations specified in the Smarter Balanced Hosting Requirements Guide. Even so, Fairway

understands the AWS instances used in the scalability/load test environment may not necessarily

conform precisely with the recommendations put forth by Smarter Balanced. When constructing the

scalability/load test environment, Fairway consulted a variety of sources to determine appropriate

AWS instance types:

 The Smarter Balanced Hosting Requirements document

 Files committed to the administrative_release source control repository:

o machine_configs.txt (found here)

o machines_and_types.xlsx (similar but not identical to machine_configs.txt,

found here)

 Data evaluated by running the load test suite against the AWS instances in the scalability test

environment. Specifically, reviewing the reports and error logs produced by JMeter and

monitoring performance metrics provided by AWS.

The Smarter Balanced Hosting Requirements document recommends AWS instances of a particular size

for baseline and on-demand web servers that host the TDS applications: “m1.xlarge (64-bit, 4 vCPUs,

https://bitbucket.org/sbacoss/administrative_release
https://bitbucket.org/sbacoss/administrative_release/src/2daf518574b5d1bf3b369b3a357d0d0def98e857/environment/machine_configs.txt?at=default&fileviewer=file-view-default
https://bitbucket.org/sbacoss/administrative_release/src/2daf518574b5d1bf3b369b3a357d0d0def98e857/environment/Machines_and_types.xlsx?at=default

TDS Performance and Capacity Evaluation

Fairway Technologies
© Copyright 2016 Fairway Technologies, Inc. All rights reserved.

 11

15 GB RAM)”9. The machine specifications described in machine_configs.txt and

machines_and_types.xlsx offer yet another perspective on AWS instance recommendations.

Fairway opted to follow the specifications proposed by the Smarter Balanced Hosting Requirements

Guide, on the assumption that this is the document most system administrators would follow when

deploying a new TDS installation.

Scalability Test Execution

Fairway configured the scalability testing suite to simulate large number of concurrent students taking

assessments in sessions created by 1,000 proctors. Fairway is aware that the requirements specify a

10:1 student/proctor ratio, but we were advised by Smarter Balanced that a 20:1 student to proctor

ratio is a more viable real-world scenario.

The first step in the scalability test script is for proctors to log in and create test sessions. These

operations occur over a 10-minute period, representing the scenario of assessment administrators

logging in and starting sessions over a period of time rather than all at once.

After the test sessions are created, the scalability test script simulates students logging in to a test

session and taking an assessment. The test script is set up in such a way that some students will be

logging into the system while others are answering questions in their assessments.

The scalability test suite runs until all simulated students have completed and submitted the

assessments. After the assessments are submitted and the test sessions have been closed, the JMeter

log file is analyzed using the Apache JMeter user interface.

Test Conditions

Table 4 summarizes/re-states the input used to run the scalability tests described in this report:

Criteria

RDS Server with General Purpose

SSD Storage Input

RDS Server with Provisioned IOPS

Storage Input

Number of Students 20,000 30,000

Number of Proctors 1,000 1,500

Source code version Code from sbacoss/release from December 14th, 2015

Table 4: Scalability test input

9 AIR, Smarter Balanced Hosting Requirements Guide, p. 17

TDS Performance and Capacity Evaluation

Fairway Technologies
© Copyright 2016 Fairway Technologies, Inc. All rights reserved.

 12

Web Server Performance

Figure 2 shows the activity from the four web servers (each an m3.xlarge instance [4 vCPUs, 15 GB

RAM]) as the scalability test ran for 30,000 students with an RDS server using a provisioned OPS storage

system:

Figure 3 shows the activity on the four web servers (each an m3.xlarge instance [4 vCPUs, 15 GB RAM])

as the scalability test was running for 20,000 students with an RDS server using a general purpose SSD

storage system:

Figure 3: TDS web server utilization during scalability test run for 20,000 students against an RDS
server using 100GB general purpose SSD storage

Figure 2: TDS web server utilization during scalability test run for 30,000 students against an RDS
server using 3 TB provisioned IOPS storage

TDS Performance and Capacity Evaluation

Fairway Technologies
© Copyright 2016 Fairway Technologies, Inc. All rights reserved.

 13

For Figures 2 and 3 (pg. 12), CPU utilization is nominal; none of the four web servers ever exceeded

60% utilization. The additional CPU utilization during the provisioned IOPS is due to the increased

workload (20,000 students for Figure 3 vs. 30,000 students for Figure 2). Disk activity is non-existent.

There is a fair amount of network activity, which is expected due to the following:

 Students taking assessments are actively and frequently communicating with the server (e.g.

fetching assessment questions and posting answers)

 Proctors are periodically polling the database server to get the status of the students in their

session

Like the CPU utilization variance, the variation in network utilization between Figures 2 and 3 can be

explained by the additional workload handled by the web servers in Figure 2.

Database Server Performance

Provisioned IOPS

Figure 4 shows the activity on the database server (db.m4.4xlarge [16 vCPUs, 64 GB RAM]) using 30,000

provisioned IOPS as the scalability test was running:

Figure 2: RDS server utilization with 3 TB provisioned IOPS storage during scalability test using
30,000 student workload

TDS Performance and Capacity Evaluation

Fairway Technologies
© Copyright 2016 Fairway Technologies, Inc. All rights reserved.

 14

General Purpose SSDs

Figure 5 shows the activity on the database server (db.m4.4xlarge [16 vCPUs, 64 GB RAM]) using

general purpose SSDs as the scalability test was running:

There is a significant amount of CPU utilization on the RDS server using general purpose SSD storage:

around 85% at its peak. The RDS server using provisioned IOPS showed less CPU utilization during the

test: around 50% at its highest. Both severs maintained a large number of open database connections.

Available memory and disk operations are not a concern; those subsystems were able to handle the

workload without issue.

Scalability Issues

Database Reliance

The TDS application is heavily dependent on its database. Fairway has identified three main issues

that cause the database server to be a performance bottleneck.

 Queries: Within a single method call, the application executes many queries against the

database

 Temporary Tables as Data Structures: In some cases, data is stored in temporary database

tables instead of a data structure on the application server

 No Caching of Static Data: During every method call, data that does not change frequently is

retrieved from the database server instead of an in-memory cache

Figure 5: RDS server utilization with 100 GB general purpose SSD storage during a scalability test
using a 20,000 student workload

TDS Performance and Capacity Evaluation

Fairway Technologies
© Copyright 2016 Fairway Technologies, Inc. All rights reserved.

 15

Queries

In many cases, the TDS application executes queries against the database server repeatedly for

different pieces of data. In some of these cases, the same table is repeatedly queried, retrieving

different columns to satisfy the request.

Shown below in Figure 6 is a sequence diagram describing the interactions when a student starts a test.

Note that Figure 6 demonstrates a small sub-section of activity that occurs during this process and

there are many other areas that repeatedly query the same database tables for additional data.

In the case displayed in above, five distinct requests are made to the database. Consolidating queries

will minimize the number of requests to the database, alleviating some of the database server’s

workload and allowing it to serve other requests.

Figure 6: Frequent database access

TDS Performance and Capacity Evaluation

Fairway Technologies
© Copyright 2016 Fairway Technologies, Inc. All rights reserved.

 16

Figure 7 shows an optimized version of the method shown above. A simple refactoring fetches all the

assessment opportunity and assessment session data required throughout its execution and stores it in

simple data structures. After refactoring, a single database call is conditionally made, based on

whether or not the validation was successful.

Temporary Tables as Data Structures

There are many cases where temporary tables are used in lieu of data structures. This design decision

means any time the application needs the data stored in the temporary table, it must make a request

to the database server. Interacting with a temporary table involves a network call from the

application server to the database server. While MySQL temporary tables are typically stored in

memory, if the table becomes too large it will be written to disk. Even if most of the temporary tables

created in the application will be very small, thus never written to disk, a large number of temporary

tables can still cause performance issues on the database server by:

Figure 7: Reduced database queries

TDS Performance and Capacity Evaluation

Fairway Technologies
© Copyright 2016 Fairway Technologies, Inc. All rights reserved.

 17

 Creating a large memory footprint that consumes resources otherwise used for MySQL’s buffer

pool10 and query cache11

 Increasing the number of requests that must be managed by the database

While the design decision to use temporary tables may be well-intentioned, the cost may outweigh the

benefit. The idea of affecting many records that need to be changed/updated in a single set-based

operation via SQL is attractive. As mentioned above, the temporary table is created on the database

server, meaning any time the TDS application server wants to manipulate the records, the following

must occur:

 A SQL query must be constructed

 The application must open a connection or request a connection from the pool of available

connections

 Execute the query against the database server

 Release the connection to the database server or return it to the connection pool

The network overhead of all the operations cited above is more expensive than using a conventional

for loop to iterate over a collection and make the necessary modifications. Use of a Java library like

Guava12 that provides a fluent interface for performing operations against a collection would also be

suggested.

No Caching of Static Data

Like many other applications, TDS relies heavily on configuration values. The vast majority of TDS’s

configuration is stored in database tables (typically within a configuration database). These values

rarely change after TDS has been deployed.

Even though the configuration values do not change frequently (if at all), the values are never cached.

Instead, they are retrieved from the database with every method call. Referring to Figure 4 above, the

TA check-in time value does not vary from student to student – every student receives the same value.

Even though the value will always be the same, the application always fetches the value from the

database. While it is very likely that the value is cached in the database server’s buffer pool or query

cache, fetching this single piece of data still requires a network roundtrip from the application to the

database.

10 MySQL Documentation – The InnoDB Buffer Pool
11 MySQL Documentation – The MySQL Query Cache
12 Google Guava documentation

https://dev.mysql.com/doc/refman/5.5/en/innodb-buffer-pool.html
https://dev.mysql.com/doc/refman/5.5/en/innodb-buffer-pool.html
https://dev.mysql.com/doc/refman/5.5/en/query-cache.html
https://github.com/google/guava
https://dev.mysql.com/doc/refman/5.5/en/innodb-buffer-pool.html
https://dev.mysql.com/doc/refman/5.5/en/query-cache.html
https://github.com/google/guava/wiki

TDS Performance and Capacity Evaluation

Fairway Technologies
© Copyright 2016 Fairway Technologies, Inc. All rights reserved.

 18

Service Components

Service Communication/Network Usage

As mentioned above in the Database Reliance section (pg. 14), the service components frequently

interact with the data layer. This “chatty” interface results in a large amount of network traffic

between the service layer and data layer, requiring powerful servers to manage any significant load.

For example, assume the Student application server is hosted on an m3.xlarge AWS instance. If

100,000 students attempt to log in simultaneously, the auto-scaling feature must spin up enough

servers to handle the work load. This could result in a large number of AWS instances that see minimal

CPU and memory usage, but have been created to handle the network traffic.

During Fairway’s scalability testing, the TDS application server performance was closely monitored.

The web servers hosting the Student and Proctor applications never saw CPU utilization above 50%, disk

and memory usage were trivial. There was a large amount of network traffic to and from the

application servers; expected behavior given the design of the application.

Recommendations

This section describes Fairway’s recommendations to alleviate/mitigate the items cited in the

Scalability Issues section (pg. 14) of this document.

Relational Database Scalability

For TDS environments intending to support at most 20,000 concurrent students, a single MySQL

database server configured for 20,000 IOPS should be sufficient13. If the server is of sufficient capacity

(following the specifications made in the Smarter Balanced Hosting Requirements Guide14), a single

database server should satisfy all the read and write requests sent to it from the TDS application

servers.

To support more than 20,000 concurrent students while maintaining a relational database, a MySQL

Cluster15 configuration is more appropriate. MySQL Cluster gives MySQL the ability to scale out for

supporting read and write operations. The MySQL Cluster software allows for automatic sharding of

data across many data nodes. Unlike some other databases that offer sharding, MySQL’s automatic

sharding feature does not sacrifice conventional JOIN operations while retaining Atomicity,

Consistency, Isolation and Durability (ACID)16 guarantees.

13 Using general purpose SSDs may be sufficient; load testing using the expected number of concurrent
users should be conducted to determine the most appropriate storage type.
14 AIR, Smarter Balanced Hosting Requirements Guide, pg. 15
15 MySQL Documentation – MySQL Cluster
16 ACID definition

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://en.wikipedia.org/wiki/ACID
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://en.wikipedia.org/wiki/ACID

TDS Performance and Capacity Evaluation

Fairway Technologies
© Copyright 2016 Fairway Technologies, Inc. All rights reserved.

 19

Additional data nodes can easily be added to an existing cluster. These nodes can be added while the

cluster is online, using a “rolling restart” methodology to ensure that parts of the cluster are always

available to serve data while the new data nodes are registered within the cluster.

MySQL NoSQL Interface

For additional performance gains, both MySQL and MySQL Cluster offer an interface that is tightly

integrated with memcached17 (an open-source distributed caching system). Referred to as the NoSQL

Interface, this allows access to the InnoDB storage engine without having to first transform the SQL.

The memcached plugin is easy to install and register/configure within MySQL. Installation and

configuration of the memcached MySQL plugin can be added to the existing deployment scripts.

Alternately, instructions can be provided to install and configure the memcached plugin after the

MySQL database server has been set up.

There are some considerations when determining whether the NoSQL interface is the proper solution:

 Data is only committed to the InnoDB engine after 32 operations have been performed against

the NoSQL Interface (i.e. memcached) protocol. This means those operations are only visible

via query after 32 operations.

 Tables that the NoSQL Interface interacts with must be registered in the

innodb_memcache.containers table. This means there will be additional SQL scripts to

execute during deployment.

MySQL Cluster Alternatives

An alternative to the MySQL Cluster installation/configuration is application-level sharding. This

strategy is similar to what is suggested in the Smarter Balanced Hosting Requirements Guide for

supporting more than 20,000 concurrent students. As stated in the Results section (pg. 5) of this

document, the Hosting Requirements Guide effectively suggests sharding student data across multiple

TDS environments18.

The MySQL Router can simplify fetching and storing data from multiple standalone MySQL servers. A

sharding strategy will be carefully considered and extensively tested to ensure even distribution across

multiple database servers.

Application-Level Sharding Concerns

Application-level sharding can introduce an additional level of complexity. An effective sharding

strategy (i.e. a strategy that evenly distributes data) can be difficult to identify and implement. If one

of the standalone servers goes offline for any reason, some data might not be available. To handle this

scenario, redundant servers must be put in place and synchronized often to minimize data loss. MySQL

Cluster software handles sharding, data replication between nodes and implementing fault tolerance.

17 memcached.org
18 AIR, Smarter Balanced Hosting Requirements Guide, pg. 16

http://memcached.org/
http://memcached.org/

TDS Performance and Capacity Evaluation

Fairway Technologies
© Copyright 2016 Fairway Technologies, Inc. All rights reserved.

 20

Due to the risks associated with application-level sharding, Fairway recommends avoiding this design

unless all other alternatives prove untenable.

Caching

Data which changes infrequently or is complex to generate can be stored in a cache for quick retrieval.

Aggressively caching static data has several benefits:

 Alleviate the workload on the database server. With the application server providing static

data from cache, the database server will be freed up to respond to other requests.

 Reduce overall network traffic. The application can now receive data from cache,

eliminating the need to make a network call to the database server for data.

Client-Side Caching

In addition to caching data on the server side, TDS may benefit from storing some data elements on the

client side. For example, AngularJS19 (a client-side Javascript framework used for

extending/enhancing browser-based user interfaces) provides a mechanism20 for caching requests.

Additionally, most modern browsers support a local storage cache, which can be used to store data

that is frequently used but does not often change. Leveraging client-side caching can eliminate

network calls to the server, thus alleviating the application server’s workload.

Consolidate Database Queries

Where possible, methods should fetch all the data they need to complete their execution in a single

query. Frequent queries to the database for additional data can cause performance issues (additional

connections from the connection pool, additional I/O operations and query processing).

Replace Temporary Tables with Data Structures

Using proper data structures instead of temporary tables will reduce the amount of communication

between the application and database servers. Operations against data structures will occur in

memory, eliminating the need to make a call to the database server in order to interact with the

temporary table. Eliminating the use of temporary tables will free up resources on the database server

to conduct other operations.

Synchronize All Servers to Same Time Zone

To eliminate date/time discrepancies, all servers in the environment should be set to use the same

time zone. Ideally, the time zone should be set to UTC. Server clocks are already synchronized using

19 AngularJS documentation
20 AngularJS Documentation – cacheFactory.Cache

https://angularjs.org/
https://docs.angularjs.org/api/ng/type/$cacheFactory.Cache
https://angularjs.org/
https://docs.angularjs.org/api/ng/type/$cacheFactory.Cache

TDS Performance and Capacity Evaluation

Fairway Technologies
© Copyright 2016 Fairway Technologies, Inc. All rights reserved.

 21

ntp (Network Time Protocol, a protocol for clock synchronization between computers)21. In the

database, date and time values should be stored using the same time zone (ideally UTC).

Synchronizing all servers and data to use the same time zone offers a few benefits:

 No need to query the database for the current date/time

 Server date/time is consistent within the environment

Component Communication

Communication Between Services

Where possible, reduce the amount of inter-service calls between components (i.e. reduce “chatty”

interactions). This recommendation also applies to communication between services and the data

layer. Rather than making many small requests, consider making fewer requests that return all

required data in a single response.

Communication with Data Layer

The Communication Between Services recommendation extends to interaction between application

components and the data layer. Instead of issuing many small queries (especially against the same

table many times) for different data elements, execute fewer larger queries to fetch all the required

data from the specified table(s) at once.

Eventual Consistency

For applications that have high throughput, leveraging eventual consistency22 can improve application

scalability. Rather than having a method call wait on synchronizing the data store (i.e. wait on the

response of an insert/update/delete against the database), a technique like event sourcing23 can be

used to record the data modification as an event that is written to a log. When data/application state

needs to be read, the log is replayed, returning the current state of the data.

Content Delivery Network

For delivering static files (e.g. CSS, javascript), a content delivery network (CDN) can reduce load on

the application server. Storing some content on a CDN can reduce the overall workload on an

application server that is serving up client-side content. Setting up a CDN in AWS or Microsoft Azure is

a simple process; both service providers allow the website to be the origin server, meaning the TDS

deployment process will be the same.

21 ntp Documentation
22 Eventual consistency definition
23 Martin Fowler, Event Sourcing

https://en.wikipedia.org/wiki/Eventual_consistency
http://martinfowler.com/eaaDev/EventSourcing.html
http://www.ntp.org/
https://en.wikipedia.org/wiki/Eventual_consistency
http://martinfowler.com/eaaDev/EventSourcing.html

TDS Performance and Capacity Evaluation

Fairway Technologies
© Copyright 2016 Fairway Technologies, Inc. All rights reserved.

 22

NOTE: Care should be taken when considering files that are candidates for delivery by CDN. If the file

contains proprietary algorithms or other sensitive data, it might not be a good candidate for serving

from the CDN.

Application State

If server-side session state is required, the application must continually have its requests routed to a

particular server (referred to as “client affinity”). In a load-balanced environment, client affinity

behavior is typically supported by a “sticky session” feature. Enabling sticky sessions can result in

uneven load on some application servers. In addition, if the application server is taken out of the load

balancer for any reason (e.g. an unexpected outage), the session state for the clients it was supporting

will no longer be available. Loss of server-side application state could cause unexpected behavior in

the clients that had affinity for the affected server.

Ideally the TDS application will be stateless, meaning the application’s request can be routed to and

handled by any server behind the load balancer, therefore not requiring any session state information

to be stored.

Client Side Assets

In addition to responding to requests for data, the application servers must also respond to the

browser’s request for assets (e.g. CSS files, JavaScript files, images, etc.). As mentioned above,

moving some or all of these assets to a CDN can be beneficial in alleviating the application server’s

workload. Additionally, we recommend moving away from the YUI JavaScript framework, bundling and

minifying JavaScript and CSS files, and implementing server-side compression.

Smaller JavaScript Footprint

The TDS applications rely on the YUI JavaScript framework. In addition to no longer being supported

by Yahoo!, the YUI framework is a large client-side library. We recommend transitioning to a modern

JavaScript framework that has a much smaller footprint than YUI.

Server-Side Compression

Enabling server-side compression can reduce overall bandwidth usage. Many popular servers support

compression (Apache HTTP Server, nginx, Microsoft IIS), as do all browsers. Gzip is a common, well-

known compression library that is readily supported by the servers mentioned previously. XML, due to

its repetition (e.g. begin and end tags have largely the same text) compress very well. JSON can also

be compressed, but the benefit will be slightly less noticeable because the JSON equivalent of an XML

message is typically fewer bytes.

The trade-off for enabling server-side compression is a slight increase in CPU usage on the server

conducting the compression. The application server will have to perform additional computation to

compress the response before it can be delivered. Typically, the CPU overhead is minimal.

TDS Performance and Capacity Evaluation

Fairway Technologies
© Copyright 2016 Fairway Technologies, Inc. All rights reserved.

 23

Appendix A: Configuration Settings Provided by AIR:

Tomcat Configuration Options

<Connector

 protocol="org.apache.coyote.http11.Http11NioProtocol"

 port="18443" maxThreads="4000"

 acceptcount="0"

 acceptorThreadCount="2"

 connectionTimeout="60000"

 maxHttpHeaderSize="18192"

 minSpareThreads="75"

 maxSpareThreads="200"

 maxConnections="30000"

 asyncTimeout="60000"

 maxKeepAliveRequests="-1"

 tcpNoDelay="true"

 compression="on"

 compressionMinSize="2048"

 noCompressionUserAgents="gozilla, traviata"

 compressableMimeType="text/html,text/xml,text/json,application/json,t

ext/javascript,text/css,text/plain,application/x-

javascript,application/javascript,application/octet-stream"

 scheme="https" secure="true" SSLEnabled="true"

 keystoreFile=“/path/to/your/tomcat.keystore" keystorePass=“your-

keystore-password"

 keyAlias=“*your_key_alias" clientAuth="false" sslProtocol=“TLS"

/>

MySQL Database Configuration Options

[client]

port = 3306

socket = /*/*/mysqld/mysqld.sock

[mysqld_safe]

socket = /*/*/mysqld/mysqld.sock

nice = 0

log_error=/*/*/log/mysql/mysql_error.log

malloc-lib = /*/*/lib/libjemalloc.so.1

[mysqld]

skip-external-locking

explicit_defaults_for_timestamp = 1

user = mysql

pid-file = /*/*/mysqld/mysqld.pid

socket = /*/*/mysqld/mysqld.sock

port = 3306

basedir = /usr

datadir = /SDB1/mysql

tmpdir = /SDK1:/SDL1

transaction-isolation = READ-COMMITTED

myisam-recover = BACKUP

max_connections = 4500

TDS Performance and Capacity Evaluation

Fairway Technologies
© Copyright 2016 Fairway Technologies, Inc. All rights reserved.

 24

lc-messages-dir = /*/*/mysql

skip-external-locking

slow_query_log=1

slow_query_log_file=/*/*/log/mysql/log-slow-queries.log

log_output = 'TABLE,FILE'

log_error=/**/log/mysql/mysql_error.log

query_cache_type = 1

query_cache_limit = 1M

query_cache_size = 20M

innodb_buffer_pool_size=5G

tmp_table_size=32M

max_heap_table_size=32M

open_files_limit = 65535

key_buffer_size = 16M

max_allowed_packet = 514M

back_log = 2000

connect-timeout=60

join_buffer_size = 1M

read_buffer_size = 1M

sort_buffer_size = 256K

myisam_sort_buffer_size = 8M

read_rnd_buffer_size = 524288

bulk_insert_buffer_size = 8M

query_prealloc_size = 65536

query_alloc_block_size = 131072

wait_timeout = 300

interactive_timeout = 300

innodb-log-file-size=512M

thread_stack = 192K

thread_cache_size = 10000

performance_schema_max_cond_instances=45516

performance_schema_max_file_instances=80993

performance_schema_max_mutex_instances=80674

performance_schema_max_rwlock_instances=31358

performance_schema_max_socket_instances=21078

performance_schema_max_table_handles=5000

performance_schema_max_thread_instances=21158

bind-address = 0.0.0.0

myisam-recover = BACKUP

expire_logs_days = 10

max_binlog_size = 100M

[mysqldump]

quick

quote-names

max_allowed_packet = 16M

[isamchk]

key_buffer_size = 16M

TDS Performance and Capacity Evaluation

Fairway Technologies
© Copyright 2016 Fairway Technologies, Inc. All rights reserved.

 25

Appendix B: References

Document Description

Smarter Balanced Hosting Requirements

Guide, V2

Describes hosting requirements/recommendations

for setting up and deploying a TDS environment

Storage for Amazon RDS Documentation regarding various storage

subsystem options for an Amazon RDS instance

AWS I/O Characteristics Describes volume configurations available for AWS

instances

AWS – Configure Sticky Sessions for Your

Load Balancer

Provides guidelines and details on how to configure

an HTTP/HTTPS load balancer in an AWS

environment

machine_configs.txt Output from an Excel spreadsheet used to

provision a TDS environment

machines_and_types.xlsx A spreadsheet used to dictate the AWS server

instances used to provision a new TDS instance

MySQL Documentation – InnoDB Buffer Pool Provides guidelines and details for working with

the MySQL InnoDB buffer pool

MySQL Documentation – Query Cache Provides guidelines and details for working with

the MySQL query cache

MySQL Documentation – Cluster An overview of MySQL Cluster server set up and

configuration

ACID (Atomicity, Consistency, Isolation,

Durability)

A definition of properties that make database

transactions reliable

Google Guava Java core libraries used by Google for interacting

with collections, caching, primitives, concurrency,

I/O, etc.

Memcached Documentation Documentation regarding the memcached library

Eventual Consistency Documentation describing the “eventual

consistency” consistency model

Event Sourcing An article defining the event sourcing model

AngularJS Documentation Documentation for the AngularJS Javascript

framework

AngularJS Documentation – Cache AngularJS documentation describing the

cacheFactory.cache implementation details

ntp Documentation Describes the ntp (Network Time Protocol)

protocol

http://www.smarterapp.org/documents/Smarter_Balanced_Hosting_Requirements_V2.pdf
http://www.smarterapp.org/documents/Smarter_Balanced_Hosting_Requirements_V2.pdf
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Storage.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-io-characteristics.html
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/elb-sticky-sessions.html
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/elb-sticky-sessions.html
https://bitbucket.org/sbacoss/administrative_release/src/2daf518574b5d1bf3b369b3a357d0d0def98e857/environment/machine_configs.txt?at=default&fileviewer=file-view-default
https://bitbucket.org/sbacoss/administrative_release/src/2daf518574b5d1bf3b369b3a357d0d0def98e857/environment/Machines_and_types.xlsx?at=default&fileviewer=file-view-default
https://dev.mysql.com/doc/refman/5.5/en/innodb-buffer-pool.html
https://dev.mysql.com/doc/refman/5.5/en/query-cache.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://github.com/google/guava
http://martinfowler.com/eaaDev/EventSourcing.html
https://angularjs.org/
http://www.ntp.org/

