
Smarter Balanced
System Architecture and

Technology Report

Assessment System Architecture and
Technology Recommendations for the
Smarter Balanced Assessment Consortium

11 July 2014

2Smarter Balanced System Architecture and Technology Report - July 2014

Table of Contents

1. Overview 6

1.1. Assessment Lifecycle 8

2. Architecture Principles12

2.2 Design for Emergent Reuse 12

2.3 Develop Homogeneous Systems 13

2.4 Demand-Driven Releases 13

2.5 Business Continuity 13

2.6 Low Cost for SEA . 13

3. High-Level System
Component Diagram 16

3.1. Logical Responsibility Groupings 16

3.2. Logical Component Diagram 17

3.3. Component Interfaces 22

3.4. Component Transport Path 23

3.5. Alignment of Logical Components to the
Assessment Lifecycle 26

4. Domain Definition 30

4.1. Assessment Creation Domain 30

4.2. Assessment Reporting Domain 32

4.3. Shared Services Domain 32

5. Deployment and Hosting . 34

5.1. Physical Location .34

5.2. Application Architecture 35

5.3. Scenarios .36

5.4. Deployment and Hosting Requirements 38

6. Data Architecture Definition 40

6.1. General Data Architecture Principles . . . 41

6.2. Assessment Creation and Management 41

6.3. Assessment Delivery 42

6.4. Assessment Reporting 42

7. Interoperability 44

7.1. Interoperability and Standards 44

7.2. Interoperability Matrix 50

8. Non-Functional
Requirement Constraints . 54

8.1. Open Licensing .54

8.2. High-Availability and Scalability 55

8.3. Accessibility . 56

8.4. Technology . 56

9. Security 58

9.1. Component-to-Component 58

9.2. User Authentication and Authorization . 58

9.3. Item-level Security 59

9.4. Student Data Security 59

9.5. Data at Rest . 59

3Smarter Balanced System Architecture and Technology Report - July 2014

10. Technical Architecture
Definition 62

10.1. Server Hardware and Software
Requirements .62

10.2. Requirements and Approach for Database,
Data Storage, and Archiving 67

10.3. Systems Management and Monitoring
Requirements .68

10.4 System Management Categories 69

10.5. Middleware and Integration Software
Requirements .69

10.6. Security Requirements and Approach for
Applications, Data, and End-user Access . 72

11. Application Development
Model 74

11.1. Objective . 74

11.2. Principles . 74

11.3. Development Practices 74

11.4. Evolutionary Database Design 75

12. Glossary 78

12.1. Inception Glossary 78

12.2. Architecture Glossary 80

13. Release Notes 84

Version 2.0.1 – Released on March 21, 2012 . 84

Version 2.0.2 – Released on April 25, 2014 . . 84

Version 2.0.3 – Released on July 11, 2014 84

4Smarter Balanced System Architecture and Technology Report - July 2014

5Smarter Balanced System Architecture and Technology Report - July 2014

Assessment System Architecture and
Technology Recommendations for the
Smarter Balanced Assessment Consortium

©2014. All rights reserved.
Prepared in accordance with RFP SBAC 03 by Measured Progress.

1. Overview

6Smarter Balanced System Architecture and Technology Report - July 2014

1. Overview
This document provides a comprehensive understanding of the Enterprise
Architecture of the Smarter Balanced Assessment System. The document is the
culmination of a rigorous effort undertaken to identify the business goals and
processes that will make up the Smarter Balanced Assessment System, and the
technology components and their relationships needed to address these business
goals and processes.

The intended audience for this document is the
application architects of the teams that will be
tasked with designing and developing the eventual
software applications that will deliver on the
business goals and processes. The document
provides a framework to guide these application
architects while they make the many decisions
necessary to design the individual systems and
applications.

It is important to note that the Enterprise
Architecture is a definition of what components
and relationships are needed to address the
business goals and processes, not how the eventual
applications will deliver on these. The how will
require much further analysis by the application
architects and their respective development teams
during later phases of this project. The value of the
Enterprise Architecture is to provide the necessary
frameworks and context that the application
architects will need to build a cohesive software
system of applications that efficiently work together
to solve the business goals and processes.

The Enterprise Architecture definition in this
document contains the following:

Architecture Principles
A set of guiding principles to be considered by all
teams, systems, and applications. These principles
are a set of musts defined by Smarter Balanced
teams early on, and should be used to guide all
design solutions going forward.

High-Level System Component Diagram
Identifies the individual components and their
relationships. Each of these components will
result in one or more applications in the final
system.

Domain Definition
Looks at the assessment system’s domain model,
which highlights the scope, attributes, and
relationships of a domain. This is followed by a
series of high-level system component diagrams
that illustrate the various component parts and
the functions they perform.

Deployment and Hosting
Presents the deployment and hosting models
and their different capabilities in a number
of scenarios, demonstrating possible set-ups.
Also suggests how the assessment system
could function either independently or when
incorporating a state’s or a district’s system(s),
where applicable.

7Smarter Balanced System Architecture and Technology Report - July 2014

Data Architecture Definition
Highlights the principles on creation,
management, and delivery of assessments
by providing best-practice recommendations
and industry benchmark approaches where
appropriate.

Interoperability
Discusses the interoperability among
components, identifying where interoperability is
required and at what stage, as well as providing
suggested standards to use to enable such
capability.

Non-Functional Requirement Constraints
Addresses concerns with regards to the
assessment system. These include: requirements
and recommendations on open licensing,
interoperability and standards, system high-
availability and scalability, accessibility, and
technology.

Security
Highlights the security concerns that must be
considered when designing and implementing
the components. These include requirements for
component-to-component communication, user
authentication and authorization, and student
data areas.

Technical Architecture Definition
Covers server and browser hardware and
software requirements, networking requirements,
database, data storage and archiving approaches
and requirements, middleware and integration
software requirements, and the security approach
and requirements for applications, data, and end-
user access.

Application Development Model
Defines suggested development processes
to ensure ease of integration of the software
products of the different teams.

Glossary
Provides a reference to the terminology and
concepts used in this document.

Release Notes
Details the changes that have been made to this
document from one version to the next.

8Smarter Balanced System Architecture and Technology Report - July 2014

1.1. Assessment Lifecycle
The general model of the assessment life cycle,
represented in the diagram below, is designed to
include any type of assessment and take into account
the iterative nature of assessments. It focuses on
the overall assessment processes from conception
to post-delivery. Depending on the assessment type,
the process can begin and end at any point in the
life cycle. The six overarching categories are broken
down into subprocesses. Data and information
can be exchanged at any point in the process
with another assessment, or administrative or
instructional application.

- Planning &
blueprinting

- Item types
- Content

development &
univeral design

- Learning standard
alignment

- Content & data
reviews

- Test form
construction

- Field testing
- Item banking &

statistics
- Content exchange

/ interoperability

- Administration planning
& scheduling

- Registration & assignment
- Form sampling
- Online infrastructure

readiness assessment
- Pre-session planning

(paper/online) & setup
- Alternate form

assignment

- Test form delivery
- Platform (paper, online,

mobile) presentation
- Item content & tools
- Adaptive testing
- Response collection
- Proctoring controls
- Form content security
- Desktop security
- Accessibility
- Testing anomalies

- Individual reporting

- Diagnostic reporting

- Informing and
personalizing instruction

- Performance on standards

- Dashboard / summary
reporting

- Aggregation / disaggregation

- Exchanging results / data

- Psychometric analysis
- Equating
- Score tables – scaling, norming
- Performance levels /

cut scores
- Aligning results with

curriculum / instruction
- Field test analysis
- Program and teacher

effectiveness

- Computer scoring
- Professional

scoring
- Algorithmic (AI)

scoring

- Portfolio scoring
- Subtest / strand

scoring
- Attemptedness
- Scaling / norming

- Performance
levels

- Growth scores
- Range finding

Content
Development

Pre-Test
Administration

Test
Administration

Scoring

Reporting

Post-Test
Administration

Assessment
Lifecycle

Figure 1.0 Assessment Lifecycle

9Smarter Balanced System Architecture and Technology Report - July 2014

Descriptions

Content Development
This phase of the lifecycle includes everything
involved in developing the assessment content.
This includes item and asset development,
alignment to learning standards, and field testing.

Pre-Test Administration
Pre-test administration includes the processes
necessary prior to test administration. This
includes form assignment, registration of
students, and scheduling of the assessment.

Test Administration
This phase of the assessment lifecycle includes
the actual delivery of the assessment and the
subprocesses contained within the phase. This
includes proctoring, delivering, and collecting
student responses.

Scoring
The scoring phase incorporates the actual scoring
of student responses as well as any data needed
for item statistics and trending.

Reporting
Reporting occurs after the scoring of the
assessments. This reporting could be as formal
as summative assessments or as informal as in
an instructional setting, providing immediate
feedback to teachers and students.

Post-Test Administration
The final phase in the assessment lifecycle
includes all processing associated with the finality
of the administered assessment, including use of
the data and information, equating, and necessary
psychometrics.

10Smarter Balanced System Architecture and Technology Report - July 2014

11Smarter Balanced System Architecture and Technology Report - July 2014

Assessment System Architecture and
Technology Recommendations for the
Smarter Balanced Assessment Consortium

©2014. All rights reserved.
Prepared in accordance with RFP SBAC 03 by Measured Progress.

2. Architecture Principles

12Smarter Balanced System Architecture and Technology Report - July 2014

2. Architecture Principles
Team leads use architecture principles to guide their decisions concerning
design.

Some rules of thumb apply when defining these
principles:

1. The number of principles needs be kept to a rea-
sonable number (less than 10 is recommended).

2. They need to be maintained to support decision
making. They are especially useful when the
options presented are equally viable.

3. They need to be maintained by the Architecture
Review Board.

4. They also need to be at a level that aids decision
making.

The following are the architecture principles
of Smarter Balanced, with some rationale and
implications:

2.1 Choose Single-Responsibility
Systems
Similar to the single-responsibility principle class,
this system-level design principle encourages
creating or acquiring systems that interact with other
systems through standard protocols.

Rationale

�� Systems must be upgraded or replaced as business
needs change.

�� Systems that perform multiple business functions
are harder to upgrade and replace.

Implications

�� Systems utilize standards for intersystem
communication.

�� Systems can be replaced with minimal disruption
to other systems.

2.2 Design for Emergent Reuse
Emergent reuse is the ability to identify existing
systems that can be used in implementing new
systems. Utilizing existing systems in a new
application is more effective than designing a new
application.

Rationale

�� Reusing capabilities in different areas reduces the
overall system maintenance costs.

�� Overly detailed design when designing for reuse is
often expensive and ineffective.

�� Identifying and refactoring for reuse is less
expensive and more effective.

Implications

�� Software designers and architects need to be
aware of existing system capabilities.

�� Systems that use open-standard interfaces that
are able to interact with other systems are easier
to utilize.

13Smarter Balanced System Architecture and Technology Report - July 2014

2.3 Develop Homogeneous
Systems

Developing homogeneous systems is a prerequisite
to emergent reuse. Systems that exchange
information through standard protocols are easier to
manage and enhance.

Rationale

�� Lower maintenance costs.

�� Faster on-boarding of new team members.

�� Simpler environment configurations.

Implications

�� Standards are extensively used.

�� Small number of standard operational
environments (e.g., Java containers).

�� Systems are built using repeatable patterns.

2.4 Demand-Driven Releases
Demand-driven releases indicate that the IT
organization is in tune with the business demand. As
a result, releases are in step with business changes.

Implications

�� Software and system releases are made at a
frequency driven by business demand and by the
business’s capacity to absorb those changes.

�� Software updates are available more frequently
for UAT.

�� Systems are well maintained and can be
maintained on an ongoing basis.

�� Systems are flexible and amenable to change.

2.5 Business Continuity
Software systems being available at all times to
support users.

Implications

�� Systems economically scale to accommodate
increased business demand.

�� Systems are tolerant of infrastructure faults.

�� Systems support disaster-recovery scenarios.

�� Operational parameters are actively monitored
using runtime metrics and dashboards.

�� Requirements are traceable to ensure compliance.

�� Code is readable and easy to understand.

�� Legacy systems are aggressively retired to
maintain simplicity of options and lower
maintenance costs.

2.6 Low Cost for SEA
A principle where design and implementation
designs will strive towards a low cost of ownership
for member SEAs, so that an SEA can implement or
adopt the Smarter Balanced system with low up-
front costs and low ongoing operational costs.

Implications

�� Design/implementation decisions that require
investments from the SEA must be balanced with
benefit, and alternatives need to be considered.

14Smarter Balanced System Architecture and Technology Report - July 2014

15Smarter Balanced System Architecture and Technology Report - July 2014

Assessment System Architecture and
Technology Recommendations for the
Smarter Balanced Assessment Consortium

©2014. All rights reserved.
Prepared in accordance with RFP SBAC 03 by Measured Progress.

3. High-Level System
Component Diagram

16Smarter Balanced System Architecture and Technology Report - July 2014

3. High-Level System Component Diagram

3.1. Logical Responsibility
Groupings

This section contains the high-level system
component diagram of the Smarter Balanced
Assessment System. The diagram illustrates the
purpose of each component in the assessment
system.

The components fall into one of the following
logical groupings from a development point of
view. The components in each grouping have
similar development needs and technologies.
Components within each group have a higher degree
of interdependency than they do with components
from other groups.

Shared Services

Assessment Creation & Management Assessment Delivery Assessment Reporting

Figure 3.1 Logical Component Responsibility
Groupings

Here are the brief descriptions of what each
grouping is responsible for:

Shared Services
These components assist the other components
and create a cohesive system for the end users.

Assessment Creation and Management
These components manage the process and
workflow of the creation and lifecycle of
assessment artifacts.

Assessment Delivery
These components deliver the assessment to the
students and gather the data and metadata about
the assessment.

Assessment Reporting
These components analyze the assessment
results and produce reports intended to improve
education and benefit student learning.

Definition: Component
In this document, “component” describes a
logically separate capability that could (but
not necessarily) be separately deployed and
managed. This means that any component
in the system could be replaced by other
implementations of the same component.
A vendor solution may entail multiple
components that are tightly coupled to
give enhanced functionality; parts of that
solution should enable the use of other
implementations of these components.

As an example, a vendor has an Item &
Test Authoring and Banking system with
tight integration into its own Test Delivery
component. This solution should allow a
Smarter Balanced member state the capability
to use another Test Delivery component.

17Smarter Balanced System Architecture and Technology Report - July 2014

3.2. Logical Component Diagram
The diagram below depicts the components of the
assessment system. This illustration provides more
detail on the concept described above.

As you study the diagram, you will find that the Test
Delivery component, under the Assessment Delivery

group, has two subcomponents. This is to denote
that they are individually deployed. It is required to
have a tighter degree of integration between these
two subcomponents than the other components in
the diagram.

You will also find descriptions of each of the
components accompanying the diagram, below.

Shared Services

Assessment Creation & Management Assessment Delivery Assessment Reporting

Digital Library

- Learning resources
 for students

- Professional
 development tools
 for teachers

Core Standards

- Common Core
 State Standards

- Metadata for
 learning & ontology

Portal

- Single Sign-on
 entry point

- Custom to
 specific role/user

Item Authoring
- Graphic edit/view
 items and stats

- Manage item
 workflow

Item Bank

- Create, update, get
 and delete item

- Item grouping
- Store item stats
- Item versioning
- Item lineage
- Item media
- Item query
 capability

Reporting
- Smarter Balanced
 reports

- Report delivery
 mechanisms

- Batch & realtime
 execution

Data Warehouse
- Time variant test
- Cleansed data

Test Authoring

- Manage test
 creation workflow

Test Delivery

Proctor
Workstation

Student
Workstation

Human Scoring

Distributed Scoring

Administration &
Registration Tools

- Manage scheduling
- Manage rostering

Machine Scoring

AI Scoring

SSO

Permissions

Program
Management

Monitoring &
Alerting

Adaptive Engine

CAT Simulator

Test Spec Bank

- Test specifications
 and blueprints

Test Item Bank

- Operational &
 field test Items

- Interim test items

Test Packager

- Prepare items and
 blueprints for
 delivery system

Test Integration

- Merge scores
- Compute final score

Test Scoring

Figure 3.2 Logical Components

Shared Services

Portal
This is the entry point where end users access
the components of the Smarter Balanced system.
It handles what components to which a user has
access to. It allows the display of information and
dashboard widgets from the other components.

Core Standards & Metadata
for Learning Data and Ontology

This is the component that manages the Common
Core State Standards and learning metadata so
that other components can reference and use
them in the same manner. It is the single version
of truth for these standards. When a component
needs to reference a core standard, it will use the
identifiers and text that have been retrieved from
the Core Standards component.

18Smarter Balanced System Architecture and Technology Report - July 2014

Digital Library
This component is an interactive teacher
professional development tool. Teachers will use
this component primarily to access resources for
their own professional development. This will
include resources such as documents, videos,
guides with sample summative / interim tests
and responses, and forums. Here teachers can
customize their content, post their reflections,
and monitor their progress on implementing new
practices. In addition, it contains a work area
where teachers can identify and use the best
resources for their needs; the system may also
be able to use the teacher’s interaction with the
system to suggest additional resources.

Single Sign-on (SSO)
Responsible for user authentication from any
user interface. The component’s interface
needs to check for an authentication token on
each request. If the token does not exist, the
component should redirect to the SSO system for
authentication. This allows the user to sign in only
once, while still able to use all the components
that they are authorized to use.

Permissions
A centralized permissions management
component for the system’s other components.
It requires that components share the same
permissioning capabilities in order to reduce
permissions management complexity. It also
enables a consistent user experience across
multiple components developed by different
vendors.

Program Management
This is the master data repository and service. It
is a set of services to provide data that crosses
component concerns. For example, tenancy
records, style sheets, Common Core State
Standards, etc.

Monitoring & Alerting
A set of services that allow components to send,
monitor, and act upon alerts in a consistent
way. It also allows vendors to develop add-on
applications and features that use and act on
these alerts.

19Smarter Balanced System Architecture and Technology Report - July 2014

Shared Services

Assessment Creation & Management Assessment Delivery Assessment Reporting

Digital Library

- Learning resources
 for students

- Professional
 development tools
 for teachers

Core Standards

- Common Core
 State Standards

- Metadata for
 learning & ontology

Portal

- Single Sign-on
 entry point

- Custom to
 specific role/user

Item Authoring
- Graphic edit/view
 items and stats

- Manage item
 workflow

Item Bank

- Create, update, get
 and delete item

- Item grouping
- Store item stats
- Item versioning
- Item lineage
- Item media
- Item query
 capability

Reporting
- Smarter Balanced
 reports

- Report delivery
 mechanisms

- Batch & realtime
 execution

Data Warehouse
- Time variant test
- Cleansed data

Test Authoring

- Manage test
 creation workflow

Test Delivery

Proctor
Workstation

Student
Workstation

Human Scoring

Distributed Scoring

Administration &
Registration Tools

- Manage scheduling
- Manage rostering

Machine Scoring

AI Scoring

SSO

Permissions

Program
Management

Monitoring &
Alerting

Adaptive Engine

CAT Simulator

Test Spec Bank

- Test specifications
 and blueprints

Test Item Bank

- Operational &
 field test Items

- Interim test items

Test Packager

- Prepare items and
 blueprints for
 delivery system

Test Integration

- Merge scores
- Compute final score

Test Scoring

Figure 3.2 Logical Components (repeated)

Assessment Creation & Management

Item Authoring
This is a graphical interface used for the authoring
and workflow related to item creation. It interacts
with the Item Bank component.

Item Bank
This component is responsible for:

�� Storing and retrieving assessment items.

�� Storing and retrieving assets and metadata
related to the assessment items.

�� Tracking item versioning.

�� Tracking item lineage. (If an item changes to
such an extent that it becomes a new item, the
lineage tracks what the item used to be.)

�� Providing a robust search and query capability
that allows searching on all types of metadata.

The Smarter Balanced instance of the Item Bank
will be considered as the system of record for
Smarter Balanced items. Items can be moved into
other Item Bank and Test Item Bank instances.
An item in the Smarter Balanced instance will be
considered the definitive source of the item.

Test Authoring
This component is a graphical interface used for
creating test blueprints and specifications, and
managing the workflow. It will interact with the
Test Spec Bank component and the Test Item
Bank component.

Test Spec Bank
A repository for test specifications, blueprints,
and other data about tests, such as the adaptive
algorithm to be used during the test.

Test Item Bank
Similar to the Item Bank, but adapted to handle the
load of a live assessment, this component contains
items that are in operational, field, or interim tests.

20Smarter Balanced System Architecture and Technology Report - July 2014

Adaptive Engine
This component is an implementation of an
adaptive algorithm. Multiple adaptive engines may
be developed. Similar to the AI Scoring component,
this component will have performance issues if
implemented as a network service instead of as
a Test Delivery component plugin. The Test Spec
Bank contains metadata that defines the algorithm
or engine to use. The Test Delivery component is
expected to load the correct algorithm or engine
when the test is being administered.

Machine Scoring & AI Scoring
Components that programmatically score items
in real time while the student is taking the test.
These must be high-performing components.
The Test Delivery component must initialize
the engine with items so that the engine can
preprocess and cache information to most
efficiently score assessment items in real time.

Shared Services

Assessment Creation & Management Assessment Delivery Assessment Reporting

Digital Library

- Learning resources
 for students

- Professional
 development tools
 for teachers

Core Standards

- Common Core
 State Standards

- Metadata for
 learning & ontology

Portal

- Single Sign-on
 entry point

- Custom to
 specific role/user

Item Authoring
- Graphic edit/view
 items and stats

- Manage item
 workflow

Item Bank

- Create, update, get
 and delete item

- Item grouping
- Store item stats
- Item versioning
- Item lineage
- Item media
- Item query
 capability

Reporting
- Smarter Balanced
 reports

- Report delivery
 mechanisms

- Batch & realtime
 execution

Data Warehouse
- Time variant test
- Cleansed data

Test Authoring

- Manage test
 creation workflow

Test Delivery

Proctor
Workstation

Student
Workstation

Human Scoring

Distributed Scoring

Administration &
Registration Tools

- Manage scheduling
- Manage rostering

Machine Scoring

AI Scoring

SSO

Permissions

Program
Management

Monitoring &
Alerting

Adaptive Engine

CAT Simulator

Test Spec Bank

- Test specifications
 and blueprints

Test Item Bank

- Operational &
 field test Items

- Interim test items

Test Packager

- Prepare items and
 blueprints for
 delivery system

Test Integration

- Merge scores
- Compute final score

Test Scoring

Figure 3.2 Logical Components (repeated)

Test Packager
This component prepares the test items and the
test specifications for use by the test delivery
system. Test Packager preprocesses assessment
assets to make them more efficient for the Test
Delivery component. The packager creates the
assessment instrument that a Test Delivery
component can consume and use to deliver the
assessment.

Assessment Delivery

Administration & Registration Tools
This component manages the capabilities and
methods required for assessment scheduling, test
windowing, room scheduling, proctor assignment,
student assignment, and student identification
methods. This component also registers the
student(s) for assessments and interacts with
the Student Information System (SIS) to gather
the student information and the accessibility
profile. It must also manage staff identification for
managing assessment events.

21Smarter Balanced System Architecture and Technology Report - July 2014

Human Scoring & Distributed Scoring
This component provides the interface humans
use to score items and view rubrics on how to
score the items even when the scorers are not
centrally located. It also delivers those scores
back to the Test Delivery and Data Warehouse
components to be stored with the student
responses. It also allows for the development
of machine scoring capabilities that are used in
conjunction with the human scoring capabilities.
It should be able to use the AI Scoring engine(s)
that are used in adaptive testing by Test Delivery.

Test Delivery
The overall responsibility of this component is to:

�� Securely deliver the assessment to the student.

�� Store the student responses.

�� Store other information about how the student
responded (e.g., time to answer, time to render
for the student).

�� Deliver the test items in the format appropriate
to the student’s accessibility needs.

Student
Workstation

This subcomponent interacts with
the student. It delivers items to the
student and gathers the responses
and response metadata. It also
contains the tools the student needs
to take the test. (e.g., calculators,
tables, accessibility tooling.)

Proctor
Workstation

This is a subcomponent that the
proctor uses to manage the test
delivery. It allows the proctor to start,
stop, suspend, resume, and help
students when they are having issues.

NOTE: Test Delivery must be able to provide scalability
and allow for deployment of additional servers as
required to meet demand. In addition, it must also
be designed for the highest level of recoverability,
redundancy, and traceability. This component will
encompass the largest number of hardware and network
differences.

Test Integration
Since hand-scored items go through a different
process than machine-scored items, this
component takes the machine-scored items
of a test and integrates them with the hand-
scored items of the same test. After scoring is
complete, the data is then uploaded into the Data
Warehouse.

Test Scoring
This component is responsible for taking all item
scores from a student’s test and then scoring
the test. This includes scores for any reporting
categories, including strands, standards, and
benchmarks.

Assessment Reporting

Data Warehouse
This component contains information moved
from the Test Delivery components. This data
should be temporal in nature so that queries
against the data can be executed at different
times. While data warehouses at the state level
may or may not need that capability, the database
schema will support it should the states elect to
use it.

Reporting
This component must be able to run Smarter
Balanced created reports against the Data
Warehouse, and to deliver those reports in
multiple formats to authorized users who need
to view them. It also must be able to generate
and deliver custom-built reports that each state,
LEA, etc. may create. Some of these reports may
be scheduled to run at a specific date and time,
repeating if necessary. These reports may be
created when a user makes the request (i.e., in
near real time).

22Smarter Balanced System Architecture and Technology Report - July 2014

3.3. Component Interfaces
This diagram shows the connection points between
logical components, including where interoperability
standards need to be defined and followed.

1. The shared services box contains components
that are required by most of the other
components.

2. The dotted arrows indicate connection points
between components, and are labeled with either
an action or an artifact that exists between the
components.

Test Packager

SIS

Shared Services

SSO Learning Data
and Ontology

Monitoring
& Alerting Permissions Portal Program

Management
Digital
Library

Portal

Item Authoring

Item Bank
Test Item Bank

Test Spec Bank

Administration &
Registration Tools

Reporting Data
Warehouse

Data Aggregation
Services

Test Delivery

Student
Workstation

Human
Scoring

Distributed
Scoring

Adaptive
Engine

Items
Package

Machine
Scoring

AI Scoring
Engine

Test Authoring

Shared Services

Test
Integration

Test
Scoring

Proctor
Workstation

Data
Warehouse

Uses

Transfers

Uses

Transfers

Get Student

Assessment Data

Assessment Results

Next
Item

Scores

Scores

Entry Point

Entry Point

Entry Point

Entry Point

Entry Point

Entry Point

Entry Point

Test Info & Roster(s)

Packages

Data

Uses

Figure 3.3 Logical Component Interfaces

23Smarter Balanced System Architecture and Technology Report - July 2014

3.4. Component Transport Path
The component transport path is the path that
artifacts will take through the Smarter Balanced
components.

The Plugin Binary Transport determines the optimal
transport between components. This requires an
abstract API to be developed that components can
call with a consistent interface. The API uses the
data format described by the accepted standard
for that asset’s domain (e.g., item format, student
information, student response.).

Administration &
Registration Tools

SISItem Bank

Service Layer
XML & JSON

Plugin Binary
Transport(s)

Item Datastore Media Store

Test Item Bank /Test Spec Bank

Service Layer
XML & JSON

Plugin Binary
Transport(s)

Spec
Datastore

Item
Datastore

Media
Store

Test Delivery

Service Layer XML & JSON

Test
Datastore

Test
Configuration

Responses
Datastore

(Relational)

Plugin Binary
Transport(s)

Item Authoring

Authoring
Workflow

Management Test Packager

Plugin Binary
Transport(s)

Test Authoring

Authoring
Workflow

Management

Data Warehouse
(Relational Database)

Data
Aggregation
Service

Plugin Binary
Transport(s)

Human Scoring

Machine Scoring

Distributed Scoring

Item Meta Data

Figure 3.4 Component Transport Path

24Smarter Balanced System Architecture and Technology Report - July 2014

The following Java™ example shows how a component may use a plugin transport:

public void sendItems(List<Item> items,SBACTarget target) {
 SBACWriter itemWriter = SBACInterop.getWriter(SBACType.ITEM,target);
 itemWriter.write(items);

}

public List<Item> receiveItems(SBACSource source, long limit)) {
 SBACReader itemReader = SBACInterop.getReader(SBACType.ITEM, source,
limit);
 return (List<Item>)itemReader.read();

}
public void fooMethod(List<Item> items)
{

 //export items to the filesystem
 sendItems(items,SBACTarget.EXPORT);

 // retrieve items that have been sent to us from
 // the configured source item banks and save to the datastore
 // limit to 500 at a time so as not to run out of memory
 List<Item> retrievedItems = new ArrayList<Item>();
 while((retrievedItems = receiveItems(SBACSource.ITEM_BANK,500)) != null
)

 ItemRepository.save(retrievedItems);

 //send items to the configured target Test Item Bank
 sendItems(items,SBACTarget.TEST_ITEM_BANK);

}

25Smarter Balanced System Architecture and Technology Report - July 2014

Following is an example plugin configuration file:

<plugins>
 <source name=”ITEM_BANK” type=”ITEM” description=”SBAC item bank”>
 <interop-standard name=”QTI_2.1”
 provider=”org.sbac.interop.provider.qti2_1.itembank”/>
 <transport name=”SBAC_TEST_ITEM_BANK”

 provider=”org.sbac.transport.hadoop”>
 <hadoop-config file=”/opt/hadoop-0.20.0/conf/hdfs-site.xml”/>
 <hadoop-dir dir=”/sbac/test_items”/>

 </transport>
 </source>
 <source name=”ITEM_IMPORT” type=”ITEM” description=””>

 <interop-standard name=”QTI_2.1”
 provider=”org.sbac.interop.provider.qti2_1.itembank”/>
 <transport name=”ITEM_IMPORT_DIR”
 provider=”org.sbac.transport.filesystem”>
 <dir name=”/home/itembank/import”/>

 </transport>
 </source>
 <target name=”ITEM_EXPORT” type=”ITEM” description=””>

 <interop-standard name=”QTI_2.1”
 provider=”org.sbac.interop.provider.qti2_1.itembank”/>
 <transport name=”ITEM_EXPORT_DIR”
 provider=”org.sbac.transport.filesystem”>
 <dir name=”/home/itembank/export”/>
 </transport>
 </target>
</plugins>

These examples show that the Plugin Binary
Transport is configured outside of the Java™
program. The SBACInterop returns an object that
understands the object type and interoperability
standard. The source / target object must deliver the
object to the requested format, and both deliver it to
and return it from the configured transport (e.g., file
system, HTTP, or socket). Components with well-

defined sources, targets, and types can be developed
independently and can be configured to use different
transports and interoperability standards.

There is a case that if using the same platform
and language across the components, it would be
possible to share the code across these components.

26Smarter Balanced System Architecture and Technology Report - July 2014

Although most data that needs to be moved can be
represented in an XML format, binary assets such
as graphics, movies, sound files, etc. also must be
moved. These assets can be large and the space
to store them grows significantly when multiple
instances of these file types are required as part of
an assessment. This causes system memory issues
and complicates the use of protocols such as HTTP.
By creating a pluggable transport capability, the most
efficient transport can be used between components.
For example, it may be efficient to use an XML REST
API to deliver test results from the Test Delivery
component to the Data Warehouse component, but
the transport among the Item Bank, Test Item Bank,
and the Test Delivery component may use an Apache
Hadoop™ Distributed File System.

Important
This will also allow multiple vendors to innovate
methodologies in order enhance this transport, and
incorporate other features at these integration points
and plugins.

3.5. Alignment of Logical
Components to the Assessment
Lifecycle
The following maps components to the
corresponding lifecycle area.

Content Development
�� Item Authoring

�� Item Bank

�� Test Authoring

�� Test Packager

�� Test Spec Bank

�� Test Item Bank

Pre-Test Administration
�� Administration and Registration Tools

Test Administration
�� Adaptive Engine

�� Test Delivery

�� Monitoring and Alerting

Scoring
�� Human Scoring

�� Distributed Scoring

�� Machine Scoring

�� AI Scoring

Reporting
�� Date Warehouse

�� Reporting

Post-Test Administration
�� Portal

Supporting Features
�� Program Management

�� Digital Library

�� SSO

�� Permissions

27Smarter Balanced System Architecture and Technology Report - July 2014

Distributed
Scoring AI Scoring

Figure 3.5. Alignment of Logical Components to
Assessment Lifecycle

28Smarter Balanced System Architecture and Technology Report - July 2014

29Smarter Balanced System Architecture and Technology Report - July 2014

Assessment System Architecture and
Technology Recommendations for the
Smarter Balanced Assessment Consortium

©2014. All rights reserved.
Prepared in accordance with RFP SBAC 03 by Measured Progress.

4. Domain Definition

30Smarter Balanced System Architecture and Technology Report - July 2014

4. Domain Definition
This section details the assessment system’s key concepts by exploring its
domain in various visual representations.

Introduction
The approach used in this section is commonly
known as the domain model. A domain model
identifies the vocabulary, attributes, and
relationships among all the entities within the
scope of the problem domain. This section guides
readers in understanding the assessment system
through a clear depiction of the domain concept.
Domain models are also known as Conceptual Entity
Relationship Diagrams.

Shown in this section is a series of domain models
that expresses the various aspects of the assessment
system: assessment creation, delivery, reporting, and
shared services.

The following diagrams use crow’s foot notation
[http://www2.cs.uregina.ca/~bernatja/ crowsfoot.
html], which shows relationships and cardinality, or
quantities, between domain objects. These diagrams
are not intended to show data-level attributes, or to
be all-inclusive, but rather to identify a set of critical
domain objects of which all components must be
aware.

NOTE: Application architecture will define how the
domain object attributes will be stored. The attributes
must comply with the attributes and names as defined
by the interoperability standards for that specific domain
object type.

�� APIP [http://www.imsglobal.org/apip.html]

�� SIF [https://www.sifassociation.org/Resources/
Developer-Resources/SIF-3-0/Pages/]

4.1. Assessment Creation Domain

Descriptions:

Item
A composite object that is made up of many item
parts and metadata (data providing information
about one or more aspects of the item) about that
item.

Item Part
Includes things such as the graphics, multimedia,
stem(s), item text, option groups, options, etc.
that make up an item.

Item Template
A predefined form meant to be used as the
starting point for creating an actual item.

Test Template
A predefined test specification form meant to
be used as the starting point for creating a test
specification.

Testlet
A set of related items that need to delivered
together (e.g., items that are part of a stage in a
staged adaptive test).

http://www2.cs.uregina.ca/%7Ebernatja/crowsfoot.html
http://www2.cs.uregina.ca/~bernatja/crowsfoot.html
http://www2.cs.uregina.ca/~bernatja/crowsfoot.html
http://www.imsglobal.org/apip.html
https://www.sifassociation.org/Resources/Developer-Resources/SIF-3-0/Pages/
https://www.sifassociation.org/Resources/Developer-Resources/SIF-3-0/Pages/

31Smarter Balanced System Architecture and Technology Report - July 2014

Item Template

Item Part

Item Author

Item

Stimulus

Item SetTest PackageTest Author

Test Template

Test Spec

Testlet

zero or more 1 or more

1 and only 1zero or 1

Figure 4.1 Assessment Creation Domain

32Smarter Balanced System Architecture and Technology Report - July 2014

4.2. Assessment
Reporting Domain

Student

Teacher Parent

Testlet

zero or more 1 or more

zero or 1 1 and only 1

Figure 4.2 Assessment Reporting Domain

4.3. Shared
Services Domain

Permission

Group User

Core Standard

Preferences

Metadata for
learning data
and ontology

Figure 4.3 Shared Services Domain

33Smarter Balanced System Architecture and Technology Report - July 2014

Assessment System Architecture and
Technology Recommendations for the
Smarter Balanced Assessment Consortium

©2014. All rights reserved.
Prepared in accordance with RFP SBAC 03 by Measured Progress.

5. Deployment and Hosting

34Smarter Balanced System Architecture and Technology Report - July 2014

5. Deployment and Hosting
A significant advantage in the architectural design of the assessment system
is the capability of being deployed and hosted in a number of different
environments. This allows member states, a single state, a district, or a school
(each of which has distinct methods of system deployment) to use the same
system. The adaptable architecture is effective in each scenario, which we will
explore here.

Key considerations for deployment and hosting are:

�� The physical location (data center) and its attri-
butes such as network connectivity, clustering,
security, availability, and backup facilities

�� Application architecture to support data from mul-
tiple tenants and partitioning

5.1. Physical Location
The deployment hierarchy, from the highest level to
the lowest level, follows:

�� Consortium

�� Group of States

�� State

�� LEA (Districts, Counties, etc.)

�� School

�� Classroom

LEA

Group of States

State

School

Consortium

Classroom

Highest Level

Lowest Level

Figure 5.1 Deployment Hierarchy

35Smarter Balanced System Architecture and Technology Report - July 2014

As a baseline, all components must be deployable
at the consortium level. For performance and
connectivity purposes, some components may
reside at lower levels in the hierarchy. For example,
a state or LEA may use their own components. The
deployment must consider all other non-functional
requirements for these components.

1. Performance and connectivity reasons may force
some components to reside lower in the
hierarchy.

2. A state or LEA might use their own component.

5.2. Application Architecture
The assessment system is to utilize multitenancy and
partitioning in its design, enabling it to implement
the flexibility that is required on the above
hierarchies.

Multitenancy is the ability for a single instance of
a component to host data pertaining to multiple
tenants. For example, a single Test Delivery system
instance hosted at the consortium level may serve
multiple states. The Test Delivery system must be
modeled to allow each state access only to data that
pertains to the state. (see Figure 5.2) Partitioning
creates a smaller, targeted instance of a component
or a group of components to be deployed at the
lower levels of a hierarchy. Components that are
deployed as partitioned must have the ability
to synchronize data with the consortium-level
component. This is most critical for components such
as Test Administration and Registration, Delivery,
and Scoring. When components are to be deployed
in a partitioned fashion, they will still need to have
the ability to synchronize data up to the consortium-
level component.

SMARTER BALANCED ITEMS

STATE 1
DATA &

CONTENT

STATE 3
DATA &

CONTENT

STATE 3 USERSSTATE 1 USERS STATE 2 USERS

SMARTER BALANCED ITEM BANK

STATE 2
DATA &

CONTENT

Figure 5.2 Mutitenancy

36Smarter Balanced System Architecture and Technology Report - July 2014

5.3. Scenarios
Following is a list of some possible scenarios. Please
note that the following scenarios are for illustration
purposes only; it is not an exhaustive list that shows
all possible permutations.

STATE 1 USERS

ITEM
AUTHORING

AND
BANKING

TEST
ITEM
BANK

TEST
DELIVERY

TEST
SPECIFICATION

BANK

SCORING
COMPONENT

CONSORTIUM LEVEL DEPLOYMENT

STATE 2 USERS

Figure 5.3.1 Deployment Scenario 1

Scenario 1 (Homogeneous): All components are
deployed at the consortium level, and one or more
states use the components without modification.

NOTE: These are possible deployment scenarios that the
open-source platform has been designed to support. At
this time, Smarter Balanced has decided to go with a
deployment model most similar to Scenario 2. The Test
Delivery and Scoring components, however will not be
available as a service at the consortium level.

STATE 1

ITEM
AUTHORING

AND
BANKING

TEST
ITEM
BANK

TEST
DELIVERY

TEST
SPECIFICATION

BANK

SCORING
COMPONENT

CONSORTIUM LEVEL DEPLOYMENT

STATE LEVEL
DEPLOYMENT

STATE 2

TEST
DELIVERY

SCORING

STATE LEVEL
DEPLOYMENT

TEST
DELIVERY

SCORING

SBAC SYSTEM STATE SYSTEM

Figure 5.3.2 Deployment Scenario 2

Scenario 2 (Heterogeneous): Some states deploy the
Smarter Balanced Test Delivery and Scoring system
components at the state level for performance
reasons, while others deploy the Test Delivery &
Scoring system at the state level and deploy all other
components at the consortium level.

37Smarter Balanced System Architecture and Technology Report - July 2014

ITEM
AUTHORING

AND
BANKING

TEST
ITEM
BANK

TEST
DELIVERY

TEST
SPECIFICATION

BANK

TEST
SPECIFICATION

BANK

SCORING
COMPONENT

CONSORTIUM LEVEL DEPLOYMENT

STATE LEVEL DEPLOYMENT

ITEM
AUTHORING

AND
BANKING

TEST
ITEM
BANK

SCORING

Figure 5.3.3 Deployment Scenario 3

Scenario 3 (Heterogeneous): States may add their
own, state-specific items and test with the Smarter
Balanced Item and Test authoring components, or
use their own authoring tool to add items and tests.

SMARTER BALANCED ITEMS

SMARTER
BALANCED ITEMS

STATE 2
ADDED ITEMS

ITEMS

STATE 3
ADDED ITEMS

ITEMS

STATE 3 USERS

STATE 1 USERS STATE 2 USERS

SMARTER BALANCED ITEM BANK

STATE 3
 ITEM BANK

Figure 5.3.4 Deployment Scenario 4

This scenario shows some common models of how
the Item Bank can be used. In this scenario:

�� State 1 is using the Smarter Balanced Item Bank
as is, and has access only to the Smarter Balanced
Items.

�� State 2 is using the Smarter Balanced Item Bank
and have added its items, which are accessible only
to State 2.

�� State 3 is using its own Item Bank and has the
Smarter Balanced items and its own items in it.

38Smarter Balanced System Architecture and Technology Report - July 2014

1. All components must be deployable at the con-
sortium level and available for use.

2. Architecture and its implementation must sup-
port installations at the consortium level, state
level, or the LEA level. It is conceivable that there
might be some components that are used at a
consortium or state level while some other com-
ponents are closer to the end user.

3. Architecture and its implementation must sup-
port cloud-based hosting services, as well as
traditional hosting options.

4. Components must support multitenancy at the
state level and above. (The architecture does not
need to support at the LEA level or lower.)

5. Components need to support partitioning.

6. When components are deployed at the lower
levels of the hierarchy, they must still support all
security requirements and other non-functional
requirements, such as Item Security, Test Secu-
rity, and Student Data Security.

7. When states or other entities on the hierarchy
choose to deploy the Smarter Balanced compo-
nents deployed at the state level or a lower level,
Smarter Balanced items and Test Data Security
cannot be compromised. Only approved person-
nel may have access to the items and data.

8. Smarter Balanced items can be exported only to
Smarter Balanced approved state systems. Items
cannot be exported to LEAs or other organiza-
tions lower in the hierarchy.

9. If applicable, the Smarter Balanced instance of
the Item Bank must support state-specific items.

5.4. Deployment and Hosting
Requirements

This list details the deployment and hosting
requirements for the assessment system. They act as
guiding principles to the design and implementation
of the assessment system regardless of which way
the system is to be deployed or hosted.

39Smarter Balanced System Architecture and Technology Report - July 2014

Assessment System Architecture and
Technology Recommendations for the
Smarter Balanced Assessment Consortium

©2014. All rights reserved.
Prepared in accordance with RFP SBAC 03 by Measured Progress.

6. Data Architecture
Definition

40Smarter Balanced System Architecture and Technology Report - July 2014

6. Data Architecture Definition
Having described the ways that the assessment system could be deployed and
hosted across the hierarchy, we now turn to details of the data architecture of
the assessment system—in particular how its design and execution serve the
intended purposes of the system.

This section will explore the various aspects of the
assessment system in terms of data architecture,
from creation, delivery, reporting and management.
At this point, it is necessary to highlight some
conventional schools of thought with regards to
database architecture and design, for contextual
purposes:

In the past, all data was assumed to be stored in
a relational database. This caused developers to
build applications using object relational mapping
tools, which in turn led to an impedance mismatch
between how an application stored and used its
data. In order for an application to use a rich-object
hierarchy, the relational database often represents
the hierarchy using multiple tables. Unfortunately,
this necessitates multiple joins to enable the
application to instantiate the objects it needs,
consuming many computing cycles to little benefit.

There has recently been a movement, however,
driven by the explosion of Web 2.0 applications,
to move away from using relational databases.
This movement is referred to as “NoSQL” [http://
en.wikipedia.org/wiki/NoSQL]. There are many
different styles of NoSQL databases. This website,
NoSQL-database.org [http://nosql-database.org/],
lists many types of NoSQL databases, and the kind of
datastore they represent.

Some of the more interesting databases that may
be applicable (but are not limited) to the Smarter
Balanced system are:

�� Document-Oriented Database [http://en.wikipedia.
org/wiki/Document-oriented_database]

�� XML Database [http://en.wikipedia.org/wiki/Xml_
database]

�� Graph Database [http://en.wikipedia.org/wiki/
Graph_database]

�� Key Value Stores [http://en.wikipedia.org/wiki/Dis-
tributed_hash_table]

The NoSQL databases generally provide for better
horizontal scaling than traditional RDBMS databases,
and can be placed in multiple data centers, allowing
the data to be synchronized or replicated with
other nodes. Most of the NoSQL solutions are
open-source, and have a great community of users
supporting each other; this will make the solution
inexpensive for schools and school districts. The
NoSQL solutions are also better at running on
commodity hardware, not requiring investments in
special hardware.

Another noteworthy concept here is that the data
from one component should not be directly exposed
to another component. Drawing from the current
best practices, this kind of information and data
exchange should be accomplished by using APIs. This
is a fundamental change from conventional concepts,
and is discussed extensively in this section and
throughout this document.

http://en.wikipedia.org/wiki/NoSQL
http://en.wikipedia.org/wiki/NoSQL
NoSQL-database.org
http://nosql-database.org
http://en.wikipedia.org/wiki/Document-oriented_database
http://en.wikipedia.org/wiki/Document-oriented_database
http://en.wikipedia.org/wiki/Xml_database
http://en.wikipedia.org/wiki/Xml_database
http://en.wikipedia.org/wiki/Graph_database
http://en.wikipedia.org/wiki/Graph_database
http://en.wikipedia.org/wiki/Distributed_hash_table
http://en.wikipedia.org/wiki/Distributed_hash_table

41Smarter Balanced System Architecture and Technology Report - July 2014

6.1. General Data Architecture
Principles

The following list presents the guiding principles of
the assessment system’s data architecture. These
principles apply to the creation, delivery, reporting,
and management aspects of the assessment system.

1. Components should not directly access other
components’ data stores. A component that
must make its data available to other compo-
nents should implement services to expose the
data for other components’ use. This reduces
dependencies on how the data is stored, allows
components to evolve independently, and allows
each component to store data in the format best
suited for that component.

2. Use a storage mechanism that fits the intended
use of the data.

3. Storage mechanisms must allow for multitenancy.

4. Each domain data element is owned by some
component, and that component must be the
source of truth for that data element. For ex-
ample, the Test Authoring system owns the tests,
and hence will be the source of truth for tests. It
will generate all the new tests, and assign them
keys that can be referenced by other systems
or components. No other system or component
should be able to create new tests or modify
them. This will ensure that all tests conform to
the proper standards and data rules.

5. Determine if a history of the domain object needs
to be maintained, so that point-in-time data is
maintained. For example, if students take the test
“123”, then the version of the test that they took
must also be saved so that it can be referenced
later. Alternatively, the version of the test taken
should be saved (as in embedded) in the score or
results.

6. All services and/or databases should not accept
data to be stored that does not follow “minimum
data needed” rules. For example, if creating a
user requires, at a minimum, a username, pass-
word, and email, then the service should not
accept anything less than such.

7. Each entity must have keys generated such that
they are unique across the system, such as UUID.

8. When using relational databases, tables must be
normalized to the third normal form unless there
is a compelling reason not to do so.

For further reference, please see this article by
Martin Fowler, Chief Scientist at ThoughtWorks:
Polyglot Persistence [http://martinfowler.
com/bliki/PolyglotPersistence.html?utm_
source=feedburner&utm_medium=feed&utm_campai
gn=Feed%3A+PlanetTw+%28Planet+TW %29].

6.2. Assessment Creation and
Management

The banking components in this group fit more into
a document style of datastore. When querying the
datastore, the usual intent is to return the full item,
group of items, or test specification. If the datastore
was relational, multiple joins would be necessary to
return those objects. This is not to say that users do
not need to query the document database for objects
that have certain characteristics (i.e., “Give me all
items that have a P value = x”), but that the result of
those queries are always well-known document types
(e.g., item, blueprint).

Another benefit of these styles of databases is
that they do not enforce schema compliance. This
allows each document to contain only the parts
that pertain to that document; other documents
can contain different parts. The document schemas
are then able to grow and change over time, which
simplifies versioning those documents. In a relational
datastore, supporting this capability expands the
number of tables necessary and/or creates table
data sparseness. Further, when making a change
to the structure of the object, usually the database

http://martinfowler.com/bliki/PolyglotPersistence.html?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+PlanetTw+%28Planet+TW%20%29
http://martinfowler.com/bliki/PolyglotPersistence.html?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+PlanetTw+%28Planet+TW%20%29
http://martinfowler.com/bliki/PolyglotPersistence.html?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+PlanetTw+%28Planet+TW%20%29
http://martinfowler.com/bliki/PolyglotPersistence.html?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+PlanetTw+%28Planet+TW%20%29

42Smarter Balanced System Architecture and Technology Report - July 2014

schema would need to change. With a document
database, the database does not actually care what
the structure is.

6.3. Assessment Delivery
A relational database may not be the most efficient
means of storing items and the assets that support
them. If items are processed properly before the test
is delivered to the student, they will behave more like
static web pages. This then allows the Test Delivery
component to leverage the scaling capabilities of
HTTP servers and content delivery networks. If the
user-interface controller is browser based, there is no
need for dynamic web page creation (e.g., JSP, ASP),
so the only dynamic storage need during the test is
the student test-taking session information (i.e., the
response data necessary for the Adaptive Engines).

This server-side portion must deal only with storing
responses, calling the scoring and adaptive engines,
and returning the static URL of the next item. This
simplifies the horizontal scaling needs of the Test
Delivery component. It also allows the component
to use a fire-and-forget resilient queuing of student
responses, enabling a slower relational update
process to place responses in a relational database
(resilient queuing/guaranteed message queuing
software like ActiveMQ, rabbitMQ, MQSeries, etc.).

The test session state could be stored using a
distributed cache in order to facilitate horizontal
scaling and durability (e.g., Ehcache [http://ehcache.
org/], Memcached [http://memcached.org/]).

6.4. Assessment Reporting
This functionality set ideally suits the support
capabilities of the relational database. The data
warehouse must have SQL-based query capability. It
will also be beneficial if the warehouse also supports
Online Analytical Processing (OLAP) [http://
en.wikipedia.org/wiki/Online_analytical_processing].
This will allow complicated data mining capability
and the support of Pivot Tables [http://en.wikipedia.
org/wiki/Pivot_table].

There are two standards that the warehouse should
use for OLAP support:

�� XML for Analysis (XMLA) [http://en.wikipedia.org/
wiki/XML_for_Analysis]

�� Multi-Dimensional Expressions (MDX) [http://
en.wikipedia.org/wiki/MultiDimensional_eXpres-
sions]

By supporting these standards, Smarter Balanced
users will be able to choose from a range of reporting
tools with differing capabilities.

http://ehcache.org
http://ehcache.org
http://memcached.org
http://en.wikipedia.org/wiki/Online_analytical_processing
http://en.wikipedia.org/wiki/Online_analytical_processing
http://en.wikipedia.org/wiki/Pivot_table
http://en.wikipedia.org/wiki/Pivot_table
http://en.wikipedia.org/wiki/XML_for_Analysis
http://en.wikipedia.org/wiki/XML_for_Analysis
http://en.wikipedia.org/wiki/MultiDimensional_eXpressions
http://en.wikipedia.org/wiki/MultiDimensional_eXpressions
http://en.wikipedia.org/wiki/MultiDimensional_eXpressions

43Smarter Balanced System Architecture and Technology Report - July 2014

Assessment System Architecture and
Technology Recommendations for the
Smarter Balanced Assessment Consortium

©2014. All rights reserved.
Prepared in accordance with RFP SBAC 03 by Measured Progress.

7. Interoperability

44Smarter Balanced System Architecture and Technology Report - July 2014

7. Interoperability

7.1. Interoperability and
Standards

Interoperability Intention
Smarter Balanced will build all the components in
the architecture and provide clear interfaces into
every component. This will enable states to add
or substitute their own component/s (or vendor-
supplied component/s). Beyond component-level
replaceability, the system also provides integration
into other systems, such as state data systems and
Student Information Systems (SIS).

Interoperability Requirements

1. Any component that is built in accordance with
the Smarter Balanced architecture must be re-
placeable, such that a state can substitute their
own component(s).

2. Intercomponent communication must use cur-
rent standards (e.g., SIF, APIP) where possible. In
the event that a current standard does not cover
the need, new extensions must be created.

3. Smarter Balanced architecture must plan for the
communication to SIS using prevailing industry
standards.

Process Flow Diagrams
This section identifies the points that demand
interoperability. Please note the process flow
diagrams below. In them, swim lanes depict the
components involved in the flow. The points that
require interoperability are the lines that cross from
one swim lane to another.

Standards Alignment
The following standards should be followed when
defining data elements:

�� Assessment Interoperability Framework (AIF)
https://ceds.ed.gov/aif.aspx

�� Common Education Data Standards (CEDS)
https://ceds.ed.gov/

�� Schools Interoperability Framework (SIF)
http://www.sifassociation.org

�� Accessible Portable Item Protocol (APIP)
http://www.imsglobal.org/APIP/

There is a strong possibility that the eventual
assessment system will have to bridge significant
gaps in the existing standards. These gaps will be
identified during detailed application design (but in
some cases, not until implementation). There should
be no expectation that all of these gaps will be
identified during the architecture definition phase.

Format Specifications
Detailed format specifications will be published on
the SmarterApp website, along with the code assets
and all other documentation associated with the
open-source work of Smarter Balanced.

http://www.smarterapp.org

https://ceds.ed.gov/aif.aspx
https://ceds.ed.gov/
http://www.sifassociation.org
http://www.imsglobal.org/APIP/
http://www.smarterapp.org

45Smarter Balanced System Architecture and Technology Report - July 2014

8. pull

Test Spec Bank

Simulation
Results

Test Item
Bank

Test Package

Author Item

Create Test Spec

Capture Items for
Test Blueprint

Prepare for Test
Administration

Select Proper
Package for

Administration

Initialize Test
Delivery

Get Spec
and Items

Generate Test
Package

Manual Review
of Simulation

Create Package

Create Test
Simulation

Import Package

Run Simulation

Item Published
Status

More items must
either be developed

or pulled from
the item bank.

Test Ready Status

Item Author / Item Bank Test Author / Test Bank Test Packager CAT Simulator Administration and
Registration Tools

Is item ready?

Is blueprint
fulfilled?

Yes

No

No

6. pull

1. push

2. trigger

5. trigger

7. query

3. pull

4. pull

Yes

Items

Figure 7.1.1 Item Authoring to Test Administration Flow of assessment content through the system.

Line# Source Component Target Component
Domain Objects(s) or
Trigger

Suggested
Standard

1 Item Authoring Test Item Bank Items (push) APIP

2 Test Authoring Test Packager Trigger start packaging RESTful API

3 Test Packager Test Spec Bank Test Specs APIP

4 Test Packager Test Item Bank Items (pull) APIP

5 Test Authoring CAT Simulator Trigger for adaptive
simulation

RESTful API

6 CAT Simulator Test Packager Test Package (pull) APIP

7 Administration and
Registration Tools

Test Spec Bank Query for available tests RESTful API

46Smarter Balanced System Architecture and Technology Report - July 2014

Aggregate
Registration Data

State Data Systems Administration and
Registration Tools Test Delivery Data Warehouse Reporting

12. query

Set Eligibility
Requirements

Import Tests

Import
Accommodation Data

School Data

Students

Accommodations

Assessment
Results

Import
Student Data

Import Schools
into Hierarchy

Execute
Assessment

Get Test and
Check Eligibility

Get Student Details

Assessment
Data

Data Clean and
Psychometrics

Collect
Registration Data

Test Window
Closed

Student Starts
Session

Create Export
for States

Generate
Aggregate Reports

Generate Individual
Student Reports

Collect Raw
Assessment Data

11. push

10. push

9. push

13. query

14. push

15. push

Figure 7.1.2 SIS to Reporting

Line# Source Component Target Component
Domain Objects(s)
or Trigger

Suggested Standard

9 State Data Systems Administration and
Registration Tools

District & School
Hierarchy

File elements must align to
CEDS and ideally map to
the SIF data structure.

10 State Data Systems Administration and
Registration Tools

Student data File elements must align to
CEDS and ideally map to
the SIF data structure.

11 State Data Systems Administration and
Registration Tools

Accessibility profiles APIP

12 Test Delivery Administration and
Registration Tools

Query student profile
and accommodations

RESTful API

13 Test Delivery Administration and
Registration Tools

Query for available
tests and confirm
eligiblity requirements

RESTful API

14 Administration and
Registration Tools

Data Warehouse Registration data File elements must align to
CEDS and ideally map to
the SIF data structure.

Flow of student information and assessment data
through the system.

47Smarter Balanced System Architecture and Technology Report - July 2014

Initialize Test Initialize Scoring
Engine

Student Answers
Question

Score Response

Present Next Item

Student
Completes Test

Aggregate Final
Item Scores

Compute
Test Scores

Send Assessment
Results to Data

Warehouse

Test Delivery Machine / AI Scoring Adaptive Engine Test Integration Human Sccoring

Adaptive?

Yes

No

18. pull Score Responses21. pull

16. push

Initialize
Adaptive Engine

Determine
Next Item

19. pull

20. push

17. push

Figure 7.1.3 Test Delivery to Test Integration The interaction of Test Delivery with AI Scoring,
Adaptive Engine, and Human Scoring.

Line# Source Component
Target
Component

Domain
Objects(s) or
Trigger

Suggested Standard

16 Test Delivery Machine / AI
Scoring

Test Package with rubrics
and scoring parameters

Standard needs to be
created.

17 Test Delivery Adaptive Engine Test Package with adaptive
specifications

Standard needs to be
created.

18 Test Delivery Machine / AI
Scoring

Item responses and scores SIF

19 Test Delivery Adaptive Engine Scored items and next item
selection

Standard needs to be
created.

20 Test Delivery Test Integration Partial assessment records SIF

21 Test Integration Human Scoring All responses and scores SIF

48Smarter Balanced System Architecture and Technology Report - July 2014

Data Warehouse Psychometric Calibration

Export Field
Test Responses

 Import Field
Test Responses

Calibrate

Export Item
Metadata

Import Item
Metadata

Item Bank

23. pull

22. trigger

24. pull

Start Calibration

Line# Source Component
Target
Component

Domain
Objects(s) or
Trigger

Suggested Standard

22 Psychometric
Calibration

Data Warehouse Trigger field test
responses report

SIF (where data
standards exist) or CSV
(Comma Separated
Value)

23 Psychometric
Calibration

Data Warehouse Item response data SIF (where data
standards exist) or CSV
(Comma Separated
Value)

24 Psychometric
Calibration

Item Bank Item metadata APIP (where data
standards exist) or CSV
(Comma Separated
Value)

Figure 7.1.4 Data Warehouse to Item bank

Flow of psychometrician data from the pull of response data to the
updating of item parameters in the Item Bank.

49Smarter Balanced System Architecture and Technology Report - July 2014

Process Request

Request for Data

Bundle Result

Publish Result

Receive Result

Data Warehouse State System

25. trigger

26. trigger

27. pull

Request Result

Line# Source Component Target Component
Domain
Objects(s) or
Trigger

Suggested Standard

25 State System(s) Data Warehouse Trigger request for data RESTful API

26 State System(s) Data Warehouse Trigger request for data
result

RESTful API

27 Data Warehouse State System(s) Assessment result data SIF (where data
standards exist) or CSV
(Comma Separated
Value)

Figure 7.1.5 Data Warehouse to State system

Export of student assessment results from the Data Warehouse.

50Smarter Balanced System Architecture and Technology Report - July 2014

7.2. Interoperability Matrix

Line# Source Component Target Component
Domain Objects(s)
or Trigger

Suggested Standard

1 Item Authoring Test Item Bank Items (push) APIP

2 Test Authoring Test Packager Trigger start packaging RESTful API

3 Test Packager Test Spec Bank Test Specs APIP

4 Test Packager Test Item Bank Items (pull) APIP

5 Test Authoring CAT Simulator Trigger for adaptive
simulation

RESTful API

6 CAT Simulator Test Packager Test Package (pull) APIP

7 Administration and
Registration Tools

Test Spec Bank Query for available
tests

RESTful API

8 Administration and
Registration Tools

Test Packager Test Package (pull) APIP

9 State Data Systems Administration and
Registration Tools

District & School
Hierarchy

File elements must align to
CEDS and ideally map to
the SIF data structure.

10 State Data Systems Administration and
Registration Tools

Student data File elements must align to
CEDS and ideally map to
the SIF data structure.

11 State Data Systems Administration and
Registration Tools

Accessibility profiles APIP

12 Test Delivery Administration and
Registration Tools

Query student profile
and accommodations

RESTful API

13 Test Delivery Administration and
Registration Tools

Query for available
tests and confirm
eligiblity requirements

RESTful API

14 Administration and
Registration Tools

Data Warehouse Registration data File elements must align to
CEDS and ideally map to
the SIF data structure.

15 Test Delivery Data Warehouse Assessment results File elements must align to
CEDS and ideally map to
the SIF data structure.

16 Test Delivery Machine / AI
Scoring

Test Package with
rubrics, and scoring
parameters

Standard needs to be
created.

17 Test Delivery Adaptive Engine Test Package with
adaptive specifications

Standard needs to be
created.

51Smarter Balanced System Architecture and Technology Report - July 2014

Line# Source Component Target Component
Domain Objects(s)
or Trigger

Suggested Standard

18 Test Delivery Machine / AI
Scoring

Item responses and
scores

SIF

19 Test Delivery Adaptive Engine Scored items and next
item selection

Standard needs to be
created.

20 Test Delivery Test Integration Partial assessment
records

SIF

21 Test Integration Human Scoring All responses and
scores

SIF

20 Adaptive Engine Test Delivery Next Item choice Interoperability standard
definition needs to be
created.

21 Test Delivery Scoring All responses and
scores

SIF

22 Psychometric
Calibration

Data Warehouse Trigger field test
responses report

SIF (where data standards
exist) or CSV (Comma
Separated Value)

23 Psychometric
Calibration

Data Warehouse Item response data SIF (where data standards
exist) or CSV (Comma
Separated Value)

24 Psychometric
Calibration

Item Bank Item metadata APIP (where data standards
exist) or CSV (Comma
Separated Value)

25 State System(s) Data Warehouse Trigger request for
data

RESTful API

26 State System(s) Data Warehouse Trigger request for
data result

RESTful API

27 Data Warehouse State System(s) Student assessment
result data

SIF (where data standards
exist) or CSV (Comma
Separated Value)

52Smarter Balanced System Architecture and Technology Report - July 2014

Bulk Import and Export
There is a need to import and export data between
components. It is expected that components format
the exported data to the standard defined for that
data type.

�� Items : APIP

�� Item metadata : the defined standard when devel-
oped (most likely extensions to IMS QTI / APIP)

�� Student info : SIF

�� Student responses : SIF

�� Scores : SIF

�� Specs / blueprints : the defined standard when
developed

�� Test Package : the defined standard when devel-
oped

�� Test Registration : SIF

Usually, import and export implies a filesystem
transport between systems (i.e., System A exports
to a file, and that file is moved by LAN, WAN, FTP,
email, or USB drive to import into System B). This
can be supported by implementing a system based
on Plugin Binary Transport (PBT). It is also possible to
use other transport technologies. It is important that
these bulk files be secured, and it is also suggested to
use Pretty Good Privacy (PGP) [http://en.wikipedia.
org/wiki/Pretty_Good_Privacy] encryptions on these
bulk files.

http://en.wikipedia.org/wiki/Pretty_Good_Privacy
http://en.wikipedia.org/wiki/Pretty_Good_Privacy

53Smarter Balanced System Architecture and Technology Report - July 2014

Assessment System Architecture and
Technology Recommendations for the
Smarter Balanced Assessment Consortium

©2014. All rights reserved.
Prepared in accordance with RFP SBAC 03 by Measured Progress.

8. Non-Functional
Requirement Constraints

54Smarter Balanced System Architecture and Technology Report - July 2014

8. Non-Functional Requirement Constraints

8.1. Open Licensing
This section describes licensing, requirements, and
recommendations. The actual licenses can be found
on SmarterApp.org [http://www.smarterapp.org]

Types of Open Licensing

Open Access(OA)
Open access licensing allows licensing access
through the internet without any restriction.
This type of licensing can be used for artifacts
produced from the architecture phase and other
creative content. For a more extensive definition,
see the Wikipedia definition of Open Access.
Open access [http://en.wikipedia.org/wiki/Open_
access_(publishing)].

Open-source Software(OSS)
Open-source software [http://en.wikipedia.org/
wiki/Open-source_software] licensing can be
used for all software components developed as
part of Smarter Balanced architecture.

Open Licensing Requirements

1. All artifacts describing the architecture must be
under an Open Access license.

2. All software artifacts produced must be under an
OSS license. If a vendor is selling a proprietary
solution, that solution must be made available
with an OSS license.

3. Where available, OSS components must be used
for building the software systems. This includes,
but is not limited to:

�� Operating systems

�� Tools used for authoring, building, and testing
the software components

�� Database software

�� Messaging systems

Recommendations
Not all software licenses are compatible. This article
[http://en.wikipedia.org/wiki/List_of_software_
licenses] lists some of the caveats of software
licensing. In particular, GPL [http://en.wikipedia.
org/wiki/GNU_General_Public_License] licensing
has known incompatibilities with other licenses
like Apache [http://en.wikipedia.org/wiki/Apache_
License]. This article [http://en.wikipedia.org/wiki/
Comparison_of_free_software_licences] compares
various licenses.

1. In period B, during construction and/or custom-
ization of components, use a consortium-level
closed-source license, but allow components
to view each other’s source for integration and
troubleshooting purposes. When a component is
ready for production, decide on the most appro-
priate OSS licensing.

2. Use an open-access license such as Creative
Commons [http://creativecommons.org/] for the
artifacts that describe the architecture.

Future OSS Project Governance
When Smarter Balanced moves from closed-source
to an open-source model, it becomes necessary to
formally manage the maintenance and enhancement
of the produced software. Therefore, each
component must have a management process or
structure. Although numerous processes have been
used in the open-source community, the following
structure tends to surface:

 Project Management
A single person or small group manages the
project. They are responsible for deciding
priorities and determining additions, and for
removing people who are given commit capability
to the source-code repository. They also define
timelines for releases of the project.

http://www.smarterapp.org
http://en.wikipedia.org/wiki/Open_access_(publishing)
http://en.wikipedia.org/wiki/Open_access_(publishing)
http://en.wikipedia.org/wiki/Open-source_software
http://en.wikipedia.org/wiki/Open-source_software
http://en.wikipedia.org/wiki/List_of_software_licenses
http://en.wikipedia.org/wiki/List_of_software_licenses
http://en.wikipedia.org/wiki/GNU_General_Public_License
http://en.wikipedia.org/wiki/GNU_General_Public_License
http://en.wikipedia.org/wiki/Apache_License
http://en.wikipedia.org/wiki/Apache_License
http://en.wikipedia.org/wiki/Comparison_of_free_software_licences
http://en.wikipedia.org/wiki/Comparison_of_free_software_licences
http://creativecommons.org/

55Smarter Balanced System Architecture and Technology Report - July 2014

 Committers
Project management approves these people to
make changes and additions to the source. They
usually have shown a keen grasp of the domain
and understanding of the software, and have
followed good programming practices in the view
of project management.

 Contributor
This would be a developer, motivated by his or her
own needs and wishes, who makes enhancements
to the source code, and contributes the changes
to the project for possible inclusion. Contributors
who make many contributions that project
management accepts may become committers.

 User
A user is an individual who uses the software,
and contributes to the project by submitting bug
reports, beta-testing the software, or suggesting
additional features.

This type of structure is usually sufficient for single
projects that work on a single component, but the
Smarter Balanced system is a series of many separate
components that work not only independently but
also in combination with the other components
of the system. A controlling structure of project
governance is necessary to make sure that individual
components don’t drift from the goal of working
with one another. A group should be tasked with
coordinating subprojects to ensure that those
efforts interoperate correctly, follow constancy in
architecture, follow standard development practices,
and grow together with a constant vision.

It is also possible that one or more existing open-
source organizations may sponsor these projects or
form a new foundation to support the continuation
of these projects. Such organizations include:

�� The Apache Software Foundation [http://apache.
org/foundation/]

�� Eclipse Foundations [http://www.eclipse.org]

8.2. High-Availability and
Scalability

Areas of high availability, scalability, and
performance to be considered are:

�� System performance as perceived by a single user

�� Scalability with large volumes of concurrent users

�� Resiliency and recoverability of the system

�� System data capacity with large volumes of data

�� High availability of systems

System Performance

1. While no specific requirements were identified
during the initial planning, test delivery systems
must be the most resilient. These systems are
highly susceptible to burst modes of operations,
with large numbers of concurrent users accessing
the system. The combination of adaptive testing
and AI scoring will have a significant impact on
system performance, and sufficient architecture
planning is needed to support this.

2. When tests are delivered, a significant amount
of student data must be collected (e.g., item,
answer, score, comments). The architecture must
consider data volumes and purging strategies.

3. Network bandwidth and reliability must be con-
sidered, and the architecture must make appro-
priate recommendations for critical components.

http://apache.org/foundation/
http://apache.org/foundation/
http://www.eclipse.org

56Smarter Balanced System Architecture and Technology Report - July 2014

Requirements that need to be identified in the
application architecture for each component are:

�� Total number of users for each component

�� Minimum number of concurrent users that each
component must support individually

�� Maximum number of concurrent users that each
component must support individually

�� Amount of data that each component will store

Principles
�� Components should scale horizontally. The use of
NoSQL technologies and distributed caches will
better enable this in the data storage area.

�� When components log events or send BI events, it
must do so a in fire-and-forget fashion, such that
there are no delays to the critical path functions.

8.3. Accessibility
Items must be accessible to fulfill the requirements
of special-needs students. The system must
move and process items in ways that conform to
accessibility standards. The Item Authoring and Test
Delivery components must allow for creating and
rendering accessible items, respectively. Accessibility
must be taken into consideration also for special-
needs users other than students. For example,
alternative ways are necessary to render colored pie
charts for those who are color blind.

Profiles for accessibility needs may be stored in a
SIS system. The Test Delivery component uses this
and other student data, and therefore the delivery
system must be able to retrieve the profile from
outside systems.

The Consortium is also considering other types of
test delivery devices (such as Braille).

8.4. Technology
Although the initial planning did not raise any
technology constraints, LEAs typically have limited
budgets and may have outdated technology. It
is difficult to innovate using older technologies.
Because the system will not be in place until
2014, assuming a target technology of 2012-era
technologies may be reasonable.

57Smarter Balanced System Architecture and Technology Report - July 2014

Assessment System Architecture and
Technology Recommendations for the
Smarter Balanced Assessment Consortium

©2014. All rights reserved.
Prepared in accordance with RFP SBAC 03 by Measured Progress.

9. Security

58Smarter Balanced System Architecture and Technology Report - July 2014

9. Security
Multiple types of security are required for the system.

9.1. Component-to-Component
Each architecture component must be capable of
connecting to other system components, and to
allow authorized components to use its services.
The communication channel between components
must ensure that those components cannot
be surreptitiously monitored or spoofed. Some
techniques that need to be considered are:

�� IP filtering

�� SSL

�� PGP (Pretty Good Privacy)

�� SAML

9.2. User Authentication and
Authorization

The system must be able to confirm that users are
who they say they are, and to confirm that they are
authorized to use the features and functionalities
of the components that their authorization allows.
This user authentication and authorization must
be standardized across components to allow
seamless access, or users and system administrators
will have difficulty maintaining the components.
User authentication and authorization must
also be configured in each system to prevent
mismatches among components and difficulties in
troubleshooting.

This necessitates a Single Sign-on (SSO) solution
and component support for the chosen solution.
Among the open-source implementations that will
be considered is OpenAM [http://en.wikipedia.org/
wiki/OpenAM].

There are typically two types of authorization:

Role-based
Each end user is given a role or set of roles, and
each component permits specific roles to use only
specific features of the component. This requires
a finite list of roles to which all components
code. The downside of this is that all roles must
be defined before or during implementation;
identifying new roles can require code changes
across all components.

Permissions-based
In this type of authorization, components define
permissions (such as view item, edit item, create
test, etc.). These permissions are associated with
groups, and users are placed within these groups.
This method allows the creation of an unlimited
number of groups without component code
changes, but requires that each component poll
an external system for the permissions associated
with a user.

Student authentication in the Test Delivery
component is a specialized mechanism that requires
a verification that each student is who the system
thinks he or she is.

http://en.wikipedia.org/wiki/OpenAM
http://en.wikipedia.org/wiki/OpenAM

59Smarter Balanced System Architecture and Technology Report - July 2014

9.3. Item-level Security
Because item exposure is critical, item security must
consider the following:

�� How are items stored, and who has access to the
data? It is critical that only authorized users, with
the correct level of privileges, are able to operate
on the items.

�� How are items transmitted to other systems and
how are those systems authenticated and
authorized?

�� Summative items must be given the highest level
of security.

9.4. Student Data Security
Student data security must comply with:

�� FERPA and COPPA.

�� State laws regarding data breaches. For example,
California has enacted the “California Data Breach
Notification Law” (SB 24 – Sep 2012), which re-
quires companies, institutions, and government
agencies to provide key details in data-breach
notification letters, and to notify the state attorney
general of the data breach.

9.5. Data at Rest
Any confidential/sensitive data that is at rest (e.g.,
password field in the database, export file, or SSN in
an XML file) must be encrypted so that it cannot be
mistakenly or surreptitiously viewed.

60Smarter Balanced System Architecture and Technology Report - July 2014

61Smarter Balanced System Architecture and Technology Report - July 2014

Assessment System Architecture and
Technology Recommendations for the
Smarter Balanced Assessment Consortium

©2014. All rights reserved.
Prepared in accordance with RFP SBAC 03 by Measured Progress.

10. Technical Architecture
Definition

62Smarter Balanced System Architecture and Technology Report - July 2014

10. Technical Architecture Definition

10.1. Server Hardware and
Software Requirements

Software Requirements: Platform
There are many programming languages and
platforms in use today. The two most popular
platforms are Oracle Java Platform (JVM) and
Microsoft’s .NET Platform (CLR). While C and C++
are still frequently used, the JVM and CLR platforms
support for multiple programming languages and
hosting multiple target platforms make them the
logical choices for this application. They allow
programming an application in multiple languages
while running on the same platform, which enables
developers to use the most efficient language when
solving specific issues. For example, Scala [http://
www.scala-lang.org] could be used for parts of a
component that require concurrent processing.
Clojure [http://clojure.org], however, is good for
concurrency, and also works well for functional style
programming, which supports more mathematical
features.

Many consider .NET to be available only for
Microsoft platforms, but the open-source project
Mono [http://www.mono-project.com/Main_Page]
allows .NET technologies to run on Linux and OSX
operating systems. Commercial versions of Mono are
also available for Apple’s iOS and Google’s Android.
Both platforms are suitable for components of the
Smarter Balanced system. Some components can be
built in one platform, and others can be built in the
other.

Mono does extend the platforms on which the
application may be deployed, but it does not support
all features of the .NET 4.0 platform, may introduce
increased support costs, and lags behind .NET
updates and new features. Until recently, Mono was
supported by Novell. Xamarin, a company founded
in May of 2011 by some of the originating Mono
developers, now supports the product.

Sun introduced JVM in the mid 1990s, and Oracle
acquired it in April of 2009 when they bought
Sun. Most platforms other than iOS support it,
and it has been a dominant enterprise platform
since the beginning of the millennium. Most cloud
technologies also support JVM well. .NET is still
competitive, although it is not as broadly supported.

JVM is the preferred platform for component
development, but this does not necessarily mean
that the Java programming language is preferred.
Instead, using JVM will allow the use of many
languages that interact with each other. Using JVM
allows innovation and deployment to non-Windows
operating systems, and enables the output to be
deployed to many servers. In addition, Oracle will
continue to support these operating systems for the
foreseeable future.

http://www.scala-lang.org
http://www.scala-lang.org
http://clojure.org
http://www.mono-project.com/Main_Page

63Smarter Balanced System Architecture and Technology Report - July 2014

Software Requirements: Browser
Browser technology advances at a rapid pace.
Recently, they have begun to provide standards
support, reducing the incompatibilities between
them. Support of older browsers (especially Internet
Explorer 6) requires custom code and additional
quality assurance testing.

Supporting earlier browser versions may become
necessary as component development begins. The
Progressive Enhancement development design
technique [http://en.wikipedia.org/wiki/Progressive_
enhancement] will allow adding features supported
by newer browsers without inhibiting the older
browsers’ ability to use their basic features.

Toward that end, the following draft specifications
serve as a starting point for the discussion regarding
system requirements. Smarter Balanced will consult
with member states and districts about how to
balance the advantages of new technologies against
the pragmatic budget and logistical issues that face
schools and districts. After further analysis of the
results from the IT Readiness Tool, Smarter Balanced
will make final recommendations for hardware,
browser versions, and operating systems.

NOTE: For the most up-to-date device and browser
requirements, refer to the Technology Strategy
Framework and Testing Device Requirements.
[http://www.smarterbalanced.org/smarter-balanced-
assessments/technology/]

Hardware Requirements
If the components use a JVM (or .NET / Mono), then
specific hardware and operating systems are not
required (e.g., Solaris running on Sparc hardware).
Any hardware or operating system that runs the JVM
is possible. A component’s application architecture
will determine that component’s hardware
requirements, but the following guidelines will
enable flexible choices.

A component’s server parts should be as stateless
as possible. Where state is necessary, the server
should use a distributed cache (e.g., Ehcache [http://
ehcache.org/], Memcached [http://memcached.org/],
etc.). This will facilitate horizontal scalability.

When developing parts of the component that can
take advantage of concurrency, use the Actor Model
[http://en.wikipedia.org/wiki/Actor_model], so that
the component can make more effective use of
multicore server hardware.

http://en.wikipedia.org/wiki/Progressive_enhancement
http://en.wikipedia.org/wiki/Progressive_enhancement
http://www.smarterbalanced.org/smarter-balanced-assessments/technology/
http://www.smarterbalanced.org/smarter-balanced-assessments/technology/
http://ehcache.org/
http://ehcache.org/
http://memcached.org/
http://en.wikipedia.org/wiki/Actor_model

64Smarter Balanced System Architecture and Technology Report - July 2014

Hosting environment and
Recommendations
The Smarter Balanced assessment system needs
to support many different hardware and network
topologies. The recommended architectural
direction will enable this capability. Because of the
requirement for ultimate flexibility, this limits the

ability to predetermine the precise hardware and
network requirements. Each components’ application
architecture will be better able to determine its
physical needs once the requirements are fully
fleshed out, but we can give a logical hosting
representation toward which each component can
develop.

Internet

Smarter Balanced Hosting

Application Servers

Data Storage

Portal Servers Web Servers

SEA & LEA Systems

 Figure 10.1.1 Logical Hosting Environment

65Smarter Balanced System Architecture and Technology Report - July 2014

Development
Environments

Integrated Testing
Environments

Production
Environments

Automated Testing
and CI

Developer
Machine

BA Testing

QA Testing

UAT Testing

Demo

Production

Continuous
Integration

Automated
Testing

Development

Figure 10.1.2 Development Environments

When a component has this style of hosting application architecture, it will
be flexible enough for deployment to multiple hosting solutions.

66Smarter Balanced System Architecture and Technology Report - July 2014

Component Server Matrix

Component Minimum Component Server Count Minimum Data Server Count

Item Authoring /
Item Bank

2 2

Test Authoring /
Test Item & Spec
Bank

2 2

Administration /
Registration

2 2

Test Delivery 2-N (based on max concurrent usage expectation) 2-N

Scoring 2-N (based on max concurrent usage expectation) 2-N

Data Warehouse 2-N (based on max concurrent usage expectation) 2-N

Reporting 2 0 (Uses Data Warehouse store)

Portal 2 (Depends on application
architecture. May be able to
share data store of SSO, et al.)

SSO / Permissions
/ Program
Management /
User Preferences
/ Identifier
Management

2 2

Monitoring &
Alerting

2 (Depends on application
architecture)

Digital Library 2-N 2-N

The rationale behind the matrix is that each component server and data
server will need to have a minimum of 2 instances, in order to maintain the
up-time expected. Meeting the above minimum

67Smarter Balanced System Architecture and Technology Report - July 2014

Recommendation for Virtual Machine
(VM) based Hosting
System VM [http://en.wikipedia.org/wiki/Virtual_
machine] / Virtual Private Server (VPS) [http://
en.wikipedia.org/wiki/Virtual_private_server] based
hosting will allow the Smarter Balanced assessment
system to bypass the usual hardware procurement
needs. Estimation of hardware and network
requirements before significant progress in software
development is usually inaccurate, leading to an
under- or overestimation of needs. By VM hosting
through a hosting provider, the assessment system
will be able to procure the required server and data
storage in a just-in-time manner. VM providers also
usually have a higher-speed network backbone to
support interserver communications. They can also
support the hardware management and network
requirements.

The following are some VM hosting providers to
consider:

Rackspace [http://www.rackspace.com/cloud]

Amazon [http://aws.amazon.com/ec2]

10.2. Requirements and Approach
for Database, Data Storage,
and Archiving

By following the recommended architecture, each
component can have individualized storage and
archiving requirements. It is expected that the
application architecture of those components will
need to define those requirements. The following is a
list of principles that should be observed:

�� Data storage needs to be point-in-time recover-
able. The time resolution is dependent on the
criticality of the respective data object.

�� Student assessment responses must never be lost.
If a student has submitted an answer to an item
and is presented with another item or test / sec-
tion completion page, the system must be able to
recover all responses including that response.

�� Item / test authoring requirements should be
based on the Smarter Balanced policy. Smarter
Balanced must define what is an acceptable loss
in case of system failure (e.g., one day, one hour,
fifteen minutes, etc.). It should be noted that the
shorter the time recovery point, the higher the
development and support costs.

�� Student responses and other Data Warehouse data
needs to be kept for longitudinal use, and Smarter
Balanced needs to define the retention lengths for
this data.

�� The delivery / warehouse components should
guarantee delivery of Item Metadata to the Item
Bank. The Item Bank should be able to accept
resent metadata, and be able to gracefully handle
redundant data.

�� Components should be able to seamlessly recover
from single data-node failures. When this occurs,
components should be able to switch to other data
nodes. This means that data storage for a compo-
nent must have a minimum of two nodes to sup-
port single node failure.

�� Smarter Balanced policies must be explicit about
archiving lengths for specific data objects. Some of
these policies may be driven by state and federal
law.

Master Data Management
[http://en.wikipedia.org/wiki/Master_data_
management]

It is the responsibility of the Program Management
component to manage and maintain any data and
reference data that is needed across components.
This is to be considered as the definitive source
for those data. Other components are expected to
retrieve those data from the Program Management
component. They may store their own copies of the
data, but are responsible for updating from the data
in Program Management when their copy becomes
stale. The components should access the data
through a REST API [http://en.wikipedia.org/wiki/
Representational_state_transfer] provided by the
Program Management component.

http://en.wikipedia.org/wiki/Virtual_machine
http://en.wikipedia.org/wiki/Virtual_machine
http://en.wikipedia.org/wiki/Virtual_private_server
http://en.wikipedia.org/wiki/Virtual_private_server
http://www.rackspace.com/cloud
http://aws.amazon.com/ec2
http://en.wikipedia.org/wiki/Master_data_management
http://en.wikipedia.org/wiki/Master_data_management
http://en.wikipedia.org/wiki/Representational_state_transfer
http://en.wikipedia.org/wiki/Representational_state_transfer

68Smarter Balanced System Architecture and Technology Report - July 2014

The Smarter Balanced architecture segregates data
by where it is modified. The general rule is that only
the component that owns the data may modify the
data. For example: Item Bank owns all Item-related
data, and therefore is the only component that may
update this data. Other components consume parts of
this data, but may never update it. It is recommended
that a simple custom solution be used instead of
a commercial MDM product, since the Smarter
Balanced requirements do not demand a sophisticated
system with features like “single version of truth”
[http://en.wikipedia.org/wiki/Single_version_of_the_
truth] and data governance.

10.3. Systems Management and
Monitoring Requirements

All components should use a logging framework
that is configurable outside of the component.
This will allow components to write log and tracing
information in a consistent and configurable way.
Here are the suggested tools:

�� JVM - log4j [http://logging.apache.org/log4j],slf4j
[http://www.slf4j.org]

�� .NET - Log4Net [http://logging.apache.org/log-
4net]

For components built on the JVM, the component
should use Java Management Extensions (JMX)
[http://www.oracle.com/technetwork/java/javase/
tech/javamanagement-140525.html]. Applications
can expose information about performance, load,
and other information through a standard interface.
Many management solutions support JMX through
direct support or through JMX to Simple Network
Management Protocol (SNMP) [http://en.wikipedia.
org/wiki/Simple_Network_Management_Protocol]
adapters.

Similar to JMX, components on the Windows .NET
platform should implement Windows Management
Instrumentation (WMI) [http://msdn.microsoft.com/
en-us/library/windows/desktop/aa394582(v=vs.85).
aspx]. It performs the same capabilities for Windows
components, and is built into the operating system.
Windows itself uses this protocol, so all tools capable

of monitoring Windows should be able to monitor
the components.

Cloud vendors usually offer monitoring capabilities
to their solutions. By following JMX / WMI and SNMP
standards while implementing components, Smarter
Balanced will be able to choose management and
monitoring solutions without being tied to a specific
vendor.

Possible vendors include, but are not limited to:

�� Nagios [http://www.nagios.org]
openNMS [http://www.opennms.org/]
Hyperic [http://www.hyperic.com]

�� CA Technologies

�� HP Openview

�� IBM Tivoli [http://www-01.ibm.com/software/
tivoli/solutions]

http://en.wikipedia.org/wiki/Single_version_of_the_truth
http://en.wikipedia.org/wiki/Single_version_of_the_truth
http://logging.apache.org/log4j
http://www.slf4j.org
http://logging.apache.org/log4net
http://logging.apache.org/log4net
http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
http://en.wikipedia.org/wiki/Simple_Network_Management_Protocol
http://en.wikipedia.org/wiki/Simple_Network_Management_Protocol
http://msdn.microsoft.com/en-us/library/windows/desktop/aa394582(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa394582(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa394582(v=vs.85).aspx
http://www.nagios.org
http://www.opennms.org
http://www.hyperic.com
http://www-01.ibm.com/software/tivoli/solutions
http://www-01.ibm.com/software/tivoli/solutions

69Smarter Balanced System Architecture and Technology Report - July 2014

10.4 System Management
Categories

High Availability
Components that fit in this category need to be
highly available and redundant. They are:

�� SSO

�� Test Delivery

�� User Preferences

�� Permissions

�� Identity Management

�� Portal

�� Monitoring and Alerting

These components need to expose information
concerning the status of the component (e.g., Test
Delivery component needs to expose the number
of connected students). These components also
must be monitored for preventative issues. The
machine or VM that they run on must be monitored
for low-memory issues, disk-full issues, processor
overloading issues, and exceptions. These must cause
alerts in the system management software, notifying
support personnel of possible issues.

Medium Availability
These are all components that are not in the above
list. Components in this category must be available,
but are not as time critical, and do not need to be as
redundant.

Although these components must be available, the
criticality of their up-time has less impact on the
assessment system processes. These components
can expose information for the management system
to monitor, but alerting could be reduced. The high
availability / redundancy needs are reduced; this
could in turn reduce cost.

NOTE: The management data that each component
needs to expose will need to be defined at the application
architecture level, as this is the point at which critical
capabilities will be fleshed out. It is at this point that
the alerting and operational procedures to mitigate the
issues should be determined.

10.5. Middleware and Integration
Software Requirements

This section details the main integration patterns
and technology recommendations for messaging,
communication, and data transfer to data
warehouses.

Recommendations relied on the following principles:

1. Favor lightweight integration and frameworks
over centralized hub-and-spoke models or mes-
saging systems. These are easier to test, inte-
grate, and have very low requirements for hard-
ware and software.

2. Resist adding business logic in centralized service
buses, since they are harder to test and
troubleshoot.

3. Favor lightweight RESTful services over integrat-
ing at the database level, which stifles emergent
changes to the database.

70Smarter Balanced System Architecture and Technology Report - July 2014

Publish and Subscribe Using ATOM Feeds
ATOM [http://en.wikipedia.org/wiki/Atom_
(standard)] feeds are a lightweight, XML-based
syndication format, and use HTTP(S) for transport,
which is secure and reliable. This is best used in
scenarios where an application wishes to share its
data with other applications, and instead of using
queuing systems, it publishes an ATOM feed. The
recent book, REST in Practice [http://restinpractice.
com/book/] has some great examples of using ATOM
for this purpose.

This pattern should be used when data is pushed to
a data warehouse or other areas where data is to be
published. The interoperability matrix (section 8.2)
enumerates the areas where this recommendation is
relevant. The image below shows this pattern at work
in the scenario of the Test Delivery system and other
components publishing data to the Data Warehouse.

Data Warehouse

ATOM
Feed

Consumer Datastore

Test Delivery

ATOM HTTP

Component

Component

Event
Repository

Figure 10.4.1 Publish and Subscribe using ATOM
feeds

http://en.wikipedia.org/wiki/Atom_(standard)
http://restinpractice.com/book/
http://restinpractice.com/book/

71Smarter Balanced System Architecture and Technology Report - July 2014

Point-to-Point Communication Using RESTful
Services
REST [http://en.wikipedia.org/wiki/Representational_state_
transfer] is recommended for use where point-to-point
communication is needed between components, either
in a fire-and-forget mode or in a request-response mode.
REST uses HTTP(S) for transport, and message formats
can use XML, JSON, and the standard HTTP methods. The
aforementioned book [http://restinpractice.com/book/]
provides an excellent deep dive into the subject.

The image below shows this pattern at work in the scenario
of the Test Authoring system querying the Test Item Bank
component for available items matching a specification.

1. Service Request

2. Service Request

Test Authoring

Business
Logic

Datastore REST
Service

Business
Logic

Datastore

Test Item Banking

REST
Client

Figure 10.4.2 Point-to-point Communication using REST

http://en.wikipedia.org/wiki/Representational_state_transfer
http://en.wikipedia.org/wiki/Representational_state_transfer
http://restinpractice.com/book/

72Smarter Balanced System Architecture and Technology Report - July 2014

10.6. Security Requirements and
Approach for Applications,
Data, and End-user Access

Also see Security. End-user access should be
controlled using a Single Sign-on solution. This
solution should support OAuth [http://oauth.net].
Users enter all components through the Portal
component. If a component determines that the
user is not authenticated, the component should be
redirected to the SSO provider.

All web-based traffic should use Secure Sockets
Layer (SSL) [http://en.wikipedia.org/wiki/SSL]. Any
intercomponent network communication should
also use SSL. Such communication should use
nonstandard ports, and be firewalled to accept only
connections from defined, static IP addresses. Any
data that is exported to a file needs to be encrypted.
It is recommended to use Pretty Good Privacy (PGP)
[http://en.wikipedia.org/wiki/Pretty_Good_Privacy]
to do so.

http://oauth.net
http://en.wikipedia.org/wiki/SSL
http://en.wikipedia.org/wiki/Pretty_Good_Privacy

73Smarter Balanced System Architecture and Technology Report - July 2014

Assessment System Architecture and
Technology Recommendations for the
Smarter Balanced Assessment Consortium

©2014. All rights reserved.
Prepared in accordance with RFP SBAC 03 by Measured Progress.

11. Application
Development Model

74Smarter Balanced System Architecture and Technology Report - July 2014

11. Application Development Model

11.1. Objective
The Application Development Model outlined below
supports Smarter Balanced system development
by multiple vendors. Clear leadership and vendor
constraints are required to achieve the envisioned
timetable. These principles will allow vendor teams
to work as independently as practical while reducing
integration risk.

11.2. Principles

Early and frequent integration

Rationale

�� Early integration exposes and resolves inherent
ambiguities, reducing the risks in overall system
delivery. Frequent integration facilitates the early
discovery of implementation issues.

Implications

�� Use automated integration tests, which minimize
the costs of integration testing.

Component Versioning

Rationale

�� A consistent versioning scheme across
components facilitates the communication of
dependencies between components.

Implications

�� Maintain a component version dependency
matrix.

Vendor Collaboration

Rationale

�� Support early and frequent integration by
enabling clear and convenient communication
channels among vendor teams.

Implications

�� Vendors must communicate and coordinate
feature development, a requirement that may
be unnatural to some vendors’ culture. Smarter
Balanced will facilitate this communication, and
resolve conflicts between vendors.

11.3. Development Practices
�� All components use short synchronized iterations
(2-3 weeks). All teams’ iterations should start and
end on the same days.

�� Use a common version control tool. (Recommend-
ed Git [http://git-scm.com/])

�� Leverage Test Driven Development [http://
en.wikipedia.org/wiki/Test-driven_development]
including the use of Mock Objects [http://www.
mockobjects.com].

�� Follow Behavior Driven Development [http://
en.wikipedia.org/wiki/Behavior_Driven_Devel-
opment] (Recommended Cucumber Framework
[http://cukes.info]).

�� Implement Continuous Integration (CI) [http://
martinfowler.com/articles/continuousIntegration.
html]. All vendors should use a common CI infra-
structure to facilitate cross-component integration
testing.

�� Use Continuous Delivery [http://en.wikipedia.
org/wiki/Continuous_Delivery], Each component
should be “one-click deployable” to its target envi-
ronment.

�� YAGNI [http://en.wikipedia.org/wiki/You_aren’t_
gonna_need_it] (You aren’t gonna need it) Do not
add functionality until it is needed.

http://git-scm.com/
http://en.wikipedia.org/wiki/Test-driven_development
http://en.wikipedia.org/wiki/Test-driven_development
http://www.mockobjects.com
http://www.mockobjects.com
http://en.wikipedia.org/wiki/Behavior_Driven_Development
http://en.wikipedia.org/wiki/Behavior_Driven_Development
http://en.wikipedia.org/wiki/Behavior_Driven_Development
http://cukes.info
http://martinfowler.com/articles/continuousIntegration.html
http://martinfowler.com/articles/continuousIntegration.html
http://martinfowler.com/articles/continuousIntegration.html
http://en.wikipedia.org/wiki/Continuous_Delivery
http://en.wikipedia.org/wiki/Continuous_Delivery
http://en.wikipedia.org/wiki/You_aren%27t_gonna_need_it
http://en.wikipedia.org/wiki/You_aren%27t_gonna_need_it

75Smarter Balanced System Architecture and Technology Report - July 2014

11.4. Evolutionary Database
Design

Database development should follow the same
practices that software development does. It is
necessary that certain practices be followed:

1. Configuration Management: All database arti-
facts must be in the revision control system to
allow the component code and the database it
interacts with to be in the same revision control
system. This enables the concurrent development
of the component and the database.

2. Database Sandbox: Create an automated process
to create the database sandbox, so the compo-
nent database can be created with all the base,
or seed, data that the component needs. This
enables anyone who needs a database sandbox to
create one without manual intervention.

3. Database Behavior: Like code, database objects
have behavior, and that behavior must be en-
forced by the application layer so the database
provides the same behavior. Here is an article
about Behavior-driven Database Design [http://
www.methodsandtools.com/archive/archive.
php?id=78].

4. Tracking changes to the database design and
schema: Every change to the database must be
coded as migration scripts, and checked into the
Configuration Management System to allow for
automated deployment of database changes in
different environments.

5. Continuous Integration: Database changes must
be part of the Continuous Integration cycle,
as any changes made to the database must be
tested and verified with the component. Without
this verification, neither the code nor the data-
base changes should be published. After the code
is verified with the database, the changes may be
published as artifacts to be deployed in other en-
vironments. Here is an e-book about Continuous
Integration with databases [http://www.informit.
com/store/product.aspx?isbn=032150206X].

6. Database Design: Database designers and devel-
opers should work together during component
development for cohesive design and develop-
ment.

http://www.methodsandtools.com/archive/archive.php?id=78
http://www.methodsandtools.com/archive/archive.php?id=78
http://www.methodsandtools.com/archive/archive.php?id=78
http://www.informit.com/store/product.aspx?isbn=032150206X
http://www.informit.com/store/product.aspx?isbn=032150206X

76Smarter Balanced System Architecture and Technology Report - July 2014

77Smarter Balanced System Architecture and Technology Report - July 2014

Assessment System Architecture and
Technology Recommendations for the
Smarter Balanced Assessment Consortium

©2014. All rights reserved.
Prepared in accordance with RFP SBAC 03 by Measured Progress.

12. Glossary

78Smarter Balanced System Architecture and Technology Report - July 2014

12. Glossary
This section contains two glossaries for the Smarter Balanced Systems
Architecture initiative. The first, Inception Glossary, defines some of the terms
and items used in the inception period. The second, Architecture Glossary,
captures the terms used for the architecture documentation that follows the
inception period.

12.1. Inception Glossary
Below, for reference, are some of the acronyms
and terms used in the inception period. In addition,
the Architecture Glossary may also be used as a
secondary reference.

AI
(Artificial Intelligence) The ability of a computer
and software to score assessment items.

Application
Computer software designed to help the user
perform specific tasks.

ARB
(Architecture Review Board) Group responsible
for the ongoing governance and assurance that
the architecture is periodically reviewed and
updated; that the standards, practices, patterns,
and policies are followed; and that solution
approaches that further the goals and objectives
of Smarter Balanced are reviewed.

Asset
Digital text, multimedia, or images.

ATP
(Association of Test Publishers) A nonprofit
organization representing providers of tests and
assessment tools and/or services.

APIP
(Accessible Portable Item Profile) A technical
standard that focuses on accessibility in
assessment items.

AYP
(Adequate Yearly Progress) A term defined in
the No Child Left Behind Act (NCLB) as: “An
individual state’s measure of yearly progress
toward achieving state academic standards.
‘Adequate Yearly Progress’ is the minimum level
of improvement that states, school districts, and
schools must achieve each year.”

Blueprint
The design for a test. The test blueprint indicates
the number of test questions or points related
to each competency on the test, and the relative
emphasis placed on each competency.

Charter
 A statement of the scope, objectives, and
participants in a project.

Cog Lab
(Cognitive Lab) A method of studying the mental
processes one uses when completing a task, such
as solving a mathematics problem or interpreting
a passage of text. An environment where
new or modified items are evaluated for their
effectiveness.

DLM
(Data Lifecycle Management) Managing the flow
of a system’s data throughout its entire life cycle.

DNU
(Do Not Use) Describes a state of an item.

79Smarter Balanced System Architecture and Technology Report - July 2014

DOK
(Depth of Knowledge) The complexity
of knowledge required by standards and
assessments. Four DOK levels have been defined:
1) recall, 2) skill/concept, 3) strategic thinking, and
4) extended thinking.

Epic
A large feature, or a grouping of smaller features
or stories. See also “Story.”

FERPA
(Family Educational Rights and Privacy Act)
Federal law protecting the privacy of student
data.

Field Test
Test made up of test items intended to develop
and calibrate new assessments.

IEP
(Individual Education Plan) Mandated by the
Individuals with Disabilities Education Act,
a document intended to help children reach
educational goals more easily than they otherwise
would. Each IEP must be tailored to the individual
student’s needs as identified by the IEP evaluation
process, and must especially help teachers and
related service providers understand the student’s
disability and how the disability affects the
learning process.

Item Pool
Collection of items or test questions.

LEA
(Local Education Agency) An educational unit
within the state. For example, a school district, a
charter school, or a special needs school.

Monitoring
The overall process of supervising the
administration of an assessment, including
scorers.

MSL
(Master Story List) A list of requirements that
evolves over time, usually found towards the end
of the development process.

NFR
(Non-functional Requirement) A criterion that
defines how a system is supposed to be, as
distinguished from a functional requirement,
which defines what a system should do. NFRs can
include constraints, attributes, or processes.

PARCC
(Partnership for the Assessment of Readiness for
College and Careers) One of two consortia that
received Federal Race to the Top Assessment
monies to develop a comprehensive assessment
system.

Performance Task
A form of testing that requires students to
perform one or more tasks.

Pilot Test
A trial series of new or modified items given to a
select group of students.

Platform
The composite of a computer’s elements,
including architecture, operating system,
programming languages, and related user
interfaces.

PLP
(Personalized Learning Plan) Learning goals
and objectives designed to meet the needs of
an individual learner. It may include academic,
career, and personal interests.

PNP
(Personal Needs Profile) A Profile to define
individual student needs.

QTI
(Question and Test Interoperability) An IMS
standard that defines interoperability for
assessment items.

Requirement
An expression of certain characteristics or
behavior that software should have. Also see
Story.

80Smarter Balanced System Architecture and Technology Report - July 2014

Retired Item
An item that will no longer be used for an
assessment.

Service-oriented
A set of principles and methodologies for
designing and developing software in the form of
interoperable services.

SIIA
(Software and Information Industry Association)
A nonprofit organization for software and digital
content industries.

SIF
(Schools Interoperability Framework) A non-
profit organization that produces open technical
standards for interoperability in the education
ecosystem, including student information
systems, assessments, and learning resources.

SIS
(Student Information System) A software system
that houses and manages data pertaining to
students.

SLA
(Service-level Agreement) Levels and standards of
service defined within a contract.

SLDS
(Statewide Longitudinal Data System) A
U.S. Department of Education program that
provides grants to states to design, develop,
and implement statewide longitudinal data
systems to capture, analyze, and use student
data from preschool to high school, college, and
the workforce. Administered by the Institute of
Education Sciences and the National Center for
Education Statistics.

Specifications
(as in item specifications) Definition of the
required elements of an item at a low level of
granularity.

SRC
(Score Reporting Category) Assessment category
of student understanding in specific content and
learning standards.

Story
A required, granular element that accomplishes a
specific goal in software development.

12.2. Architecture Glossary
The following list defines ambiguous terms that
directly reference the architecture document and
are commonly found in both the educational and
technology fields.

Application Architecture
The design of an application’s internal structure.

Application Development
The development of a software product.

Architecture
The practical art of selecting and interconnecting
hardware components to create computers that
meet functional, performance, and cost goals,
also to formally model those systems.

API
(Application Programming Interface) A source-
code-based specification intended as an interface
for communication among software components.
An API may include specifications for routines,
data structures, object classes, and variables.

ASP
(Active Server Pages) A web-scripting interface by
Microsoft.

Bandwidth
The rate of data transfer, bit rate, or throughput,
measured in bits per second (bps).

Binary Transport
A transport implementation suited for distributed
applications.

81Smarter Balanced System Architecture and Technology Report - July 2014

Cardinality
In database design, the defined cardinality
explains how each table links to the others.

Component
One of the high-level functional units that make
up a system.

Concurrency
A property of systems in which several
computations are executing simultaneously, and
are potentially interacting with each other.

Data Warehouse
A database used for reporting and analysis.

Database
An organized collection of data for one or more
purposes, usually in digital form. The data are
typically organized to model relevant aspects of
reality.

Deployment
The process of making a software system
available for use.

Domain
A set of common requirements, terminology, and
functionality for any software constructed to
solve a problem.

Hosting
A facility where software and data are kept.

Identifier
 A unique name given to a specific object or a
specific class of objects.

Interface
A tool and concept that refers to a point of
interaction between components. The concept
on an interface is applicable at the hardware level
and at the level of software elements.

JSON
(JavaScript Object Notation) A lightweight,
text-based, open standard designed for human-
readable data interchange.

JSP
(Java Server Pages) Technology that helps
software developers serve dynamically generated
web pages based on HTML, XML, and other
document types.

LGPL
(Lesser General Public License) A free software
license published by the Free Software
Foundation (FSF).

NoSQL
A broad class of database management systems
that significantly differ from the classic relational
database model.

Tenant
In architecture design, an instance of the software
that runs on a server, serving a single client
organization. Multitenancy is an instance of the
software that runs on a server, serving multiple
client organizations (tenants).

XML
(eXtensible Markup Language) A set of rules for
encoding documents in machine-readable form.

83Smarter Balanced System Architecture and Technology Report - July 2014

Assessment System Architecture and
Technology Recommendations for the
Smarter Balanced Assessment Consortium

©2014. All rights reserved.
Prepared in accordance with RFP SBAC 03 by Measured Progress.

13. Release Notes

84Smarter Balanced System Architecture and Technology Report - July 2014

13. Release Notes
The following is a history of the Smarter Balanced System Architecture and
Technology Report since its initial release in January of 2012.

Version 2.0.1 – Released on March 21, 2012
This update includes a clarification on system requirements and a few minor fixes.

NEW Added CAT Simulator to High-Level Component Diagram.

CHANGE Replaced instances of SBAC with Smarter Balanced.

CHANGE Add clarification to Browser Requirements in 11.1.

FIX Title correction to Figure 8.1.3.

FIX Fixed split bullet in Section 13.3.

FIX Correction to Diagram 4.1.

Version 2.0.2 – Released on April 25, 2014
Includes several updates to the High-Level Component Diagram and Swim-lane diagrams.

CHANGE Removed User Preference and Identifier Management components. [Chapter 4]

CHANGE Merged Test Administration and Registration into a single component. [Chapter 4]

CHANGE Added Test Integration component. [Chapter 4]

CHANGE Test Packager now shown as tightly coupled with Test Bank. [Chapter 4]

CHANGE Updates to swim-lane diagrams to reflect component changes. [Chapter 8]

FIX Minor edits and corrections. [Chapter 4 & 8]

Version 2.0.3 – Released on July 11, 2014
Final Phase II updates to make the document more complementary to the SmarterApp.org assets.

CHANGE Removed several chapters that were relevant only to the initial development.

CHANGE Relabeled Administration and Registration Tools component.

CHANGE Cleaned up and added clarifications across the document.

FIX Minor edits and corrections.

	1. Overview
	1.1. Assessment Lifecycle

	2. Architecture Principles
	2.2 Design for Emergent Reuse
	2.3 Develop Homogeneous Systems
	2.4 Demand-Driven Releases
	2.5 Business Continuity
	2.6 Low Cost for SEA

	3. High-Level System Component Diagram
	3.1. Logical Responsibility Groupings
	3.2. Logical Component Diagram
	3.3. Component Interfaces
	3.4. Component Transport Path
	3.5. Alignment of Logical Components to the Assessment Lifecycle

	4. Domain Definition
	4.1. Assessment Creation Domain
	4.2. Assessment
Reporting Domain
	4.3. Shared
Services Domain

	5. Deployment and Hosting
	5.1. Physical Location
	5.2. Application Architecture
	5.3. Scenarios
	5.4. Deployment and Hosting Requirements

	6. Data Architecture Definition
	6.1. General Data Architecture Principles
	6.2. Assessment Creation and Management
	6.3. Assessment Delivery
	6.4. Assessment Reporting

	7. Interoperability
	7.1. Interoperability and Standards
	7.2. Interoperability Matrix

	8. Non-Functional Requirement Constraints
	8.1. Open Licensing
	8.2. High-Availability and Scalability
	8.3. Accessibility
	8.4. Technology

	9. Security
	9.1. Component-to-Component
	9.2. User Authentication and Authorization
	9.3. Item-level Security
	9.4. Student Data Security
	9.5. Data at Rest

	10. Technical Architecture Definition
	10.1. Server Hardware and Software Requirements
	10.2. Requirements and Approach for Database, Data Storage, and Archiving
	10.3. Systems Management and Monitoring Requirements
	10.4 System Management Categories
	10.5. Middleware and Integration Software Requirements
	10.6. Security Requirements and Approach for Applications, Data, and End-user Access

	11. Application Development Model
	11.1. Objective
	11.2. Principles
	11.3. Development Practices
	11.4. Evolutionary Database Design

	12. Glossary
	12.1. Inception Glossary
	12.2. Architecture Glossary

	13. Release Notes
	Version 2.0.1 – Released on March 21, 2012
	Version 2.0.2 – Released on April 25, 2014
	Version 2.0.3 – Released on July 11, 2014

