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Chapter 1: Automated Scoring Plan

The purpose of this document is to overview the research studies that will occur in the area of
Automated Scoring for the Smarter Balanced Pilot test. The research plan describes CTB’s work to
investigate the Automated Scoring of various item types and Automated Scoring engines that are a
component of this project. For the purposes of the Smarter Balanced work, CTB will refer to
Automated Scoring as a variety of methods, including statistical techniques, natural language
processing, and machine learning, used to computationally derive a score for a constructed-
response item. Some of these techniques are related to the field of artificial intelligence (Al).
Because scoring methods vary across the engines that will be deployed for the Smarter Balanced
Assessment Consortium pilot, some of which do not use Al techniques, CTB will use the term
Automated Scoring rather than Al in this document. Chapter 1 describes the item types as they are
defined in the data files delivered from the American Institutes for Research (AIR) with the purpose
of defining and consistently using the same terms when moving from reviews of data to the CTB
research plan. The Smarter Balanced Assessment Consortium pilot administration source data
stems from two main files: an item metadata file that describes the content domain, claim, target,
and standards an item measures and other item attributes (e.g., DOK) and a student response data
file that includes student response information as well as a subset of item metadata information. In
addition to describing items, Chapter 1 describes how items are selected for handscoring,
Automated scoring, or validation only studies. Chapter 2 describes the criteria CTB will use to
evaluate the functioning of the Automated Scoring of items. Chapters 3-8 provide the proposals for
the research studies that will be investigated to enhance Smarter Balanced’s efficacy in its use of
Automated Scoring.

Iltem Descriptions

ltem metadata was available for all 5,412 pilot items in the test delivery system, 1,494 of which
require hand-scoring by CTB and our scoring sub-contractors, either to produce the score of record or
to prepare Automated Scoring engine training and validation sets. The remaining 3,918 items were
identified as selected-response and simple and complex technology enhanced items (including
graphic response items). These technology enhanced items will be sent through rubric validation as
per the Scoring Plan. Selected-response and technology enhanced items are scored by AIR’s test
delivery system.

Table 1.1 shows the constructed-response item type as identified in metadata files for the 1,494
items, a description of the item type, the number of items coded with the item type by content area,
and the available Automated Scoring engine developers for each item type. As noted in the table,
some of these developers participated in the Automated Student Assessment Prize (ASAP)
competition.

The Automated Scoring research in which CTB engages in on behalf of the Smarter Balanced
Assessment Consortium will focus primarily on the Natural Language (NL), Short Answer (SA), and
Essay type items; however, we will also score and evaluate novel validation responses (responses
not seen during rubric validation) for Equation (EQ) type items. Both the NL and SA items use Natural
Language Processing Techniques; the distinction has only to do with the presence of a machine
rubric specific to the AIR proposition engine for the NL items, and not for the SA items.
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Table 1.1. Description of Pilot Constructed-Response Item Types and Scoring Engines

Constructed-

Number of

Response Description ELA/literacy N%w(iﬁ;:;]':m Available Scoring Engines*
Type Pilot items
NL Short constructed- 515 128 AIR-Proposition
re&:pol\rJlses}:'teXt Measurement Incorporated
only. Machine .
scoring rubric for Luis Tandalla (ASAP 1)
scoring engine Xavier Conort (ASAP 3)
available. James Jesensky (ASAP 4)
Pawel Jankiewicz (ASAP 5)
LightSIDE
SA Short constructed- 47 200 Measurement Incorporated
resipol\f;lsesﬁ.text Luis Tandalla (ASAP 1)
only. Machine
scoring rubric for Jurej Zbontar (ASAP 2)
AIR’s proposition Xavier Conort (ASAP 3)
scoring engine James Jesensky (ASAP 4)
unavailable. Pawel Jankiewicz (ASAP 5)
LightSIDE
Essay Extended 49 0 AIR-Open Source Engine
constructed- Measurement Incorporated
responses, text CTB-Bookette
only.
LightSIDE
Luis Tandalla (ASAP 1)
Jure Zbontar (ASAP 2)
Xavier Conort (ASAP 3)
James Jesensky (ASAP 4)
Pawel Jankiewicz (ASAP 5)
EQ Equation 0 555 AIR-EQS (AIR Equation
responses. System)
Unlimited
possibility for
student response.

*ASAP refers to the Automated Student Assessment Prize, a competition hosted by the William and Flora
Hewlett Foundation. The number refers to the place awarded in the second phase of the public competition to

this developer.
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Automated Scoring Training and Validation Plan

Response sampling and routing.

To sample and route responses to the scoring clients, CTB assigned each item to one of five cases
based upon engine validation and research needs and the number of on-grade responses available.
Note that Case O is the case for selected-response and technology-enhanced items, for which no
human scoring will be conducted.

Descriptions of Cases 1 through 4 and items included in those cases follow, and are represented in

Table 1.2:
1.

Case 1. Hand-scoring only. CTB selected a stratified random sample of 1,800 responses
of the available on-grade responses per item for a single human read. Five percent of
these responses will be scored with a second read for inter-rater reliability purposes.
ltems include the following:

a. NL, SA, and Essay Performance Task items designed for grades 4, 7, and 11.
This enabled pre range-finding activities to occur for these grades prior to receipt
of the full response data from the test delivery vendor, as in other cases listed
below the range-finding data must be a subset of the Automated Scoring training
set, which could not be sampled until the full set of responses was received.

b. Any grade level NL, SA, or Essay items with fewer than 1,500 on-grade
responses. For the pilot, CTB set a threshold of 1,500 on-grade responses for the
Automated Scoring efforts to allow for 1,000 training responses and 500
validation responses based on CTB’s and our sub-contractor’s previous
experience. Studies during the pilot phase to determine optimal training and
validation set size are described in chapter 3 of this document and will inform
this threshold for the field test.

Case 2. Validation only. CTB selected stratified random sample of 500 responses of the
available on-grade responses per item. Each response will receive two human reads and
adjudication of any non-exact scores by a senior human rater. The score of record will be
the senior rater for adjudicated responses or the matched score when the two human
scores agree. Scores of record will be compared against engine scores to validate the
engine. Items include:

a. Equation (EQ) items designed for the AIR equation engine with at least 100
responses available for validation. This engine has not yet received a validation
against highly validated human scores on novel responses, whereas other
technology enhanced scoring methods have and rubric validation will therefore
be sufficient.

Case 3. Automated Scoring training and validation. CTB selected a stratified random
sample of 1,800 responses of the available on-grade responses per item. Of these, a
random sample of 1,000 responses will be designated as training responses and 500
responses will be designated as validation responses. The training and validation
responses will receive two human reads and adjudication of any non-exact scores by a
senior human rater. The score of record will be the senior rater for adjudicated responses
or the matched score when the two human scores agree. Scores of record will be
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compared against engine scores for validation purposes. The remaining 300 responses
will be scored by the qualified engines only. Items include:

a. NL, SA, and Essay Performance Task items designed for grades 3, 5, 6, 8, 9, and
10 with at least 1,500 on-grade responses. Choosing these grade levels of
performance tasks allowed CTB to receive the full response data from the test
delivery platform prior to pulling range-finding and rubric validation samples. This
was important as the range-finding and rubric validation samples must be a
subset of the Automated Scoring training sample to ensure comparability of AIR’s
proposition scoring engine, which uses a rubric validation process, with the other
Automated Scoring engines, which use Al-type training processes, on the same
items. In order to sample the training set, the full response data was required.

b. All non-performance task (CAT) NL and SA items with at least 1,500 on-grade
responses. Again, the rubric validation sample for the NL items is the same as
the range-finding set, and a subset of the training set, to ensure alignment of
human and machine training materials and allow for AIR to perform rubric
validation and the other Automated Scoring vendors to train their engines on the
same data.

Case 4. Automated Scoring training and validation, and special studies. CTB selected
stratified random sample of 2,500 of the available on-grade responses per item. Of
these, a random sample of 1,500 responses will be designated as training responses
and a random sample of 1,000 of these responses will be designated as validation
responses. The score of record will be the senior rater for adjudicated responses or the
matched score when the two human scores agree. Scores of record will be compared
against engine scores for validation purposes. Only items for which at least 2,500 on-
grade responses are available are eligible for this case as the 2,500 sample size is
important to the research studies defined later in this document. The items in this
category are of NL, SA, and Essay type. Note that the random selection of these items
from the Case 3 items provides for the comparison of engine performance and the study
of item characteristics to engine effectiveness. Items include:

a. A random selection of the Case 3 items with at least 2,500 on-grade responses.
i 5 essay items
ii. 2 English language arts (ELA)/literacy NL items
iii. 3 ELA/literacy SA items
iv. 2 mathematics NL items
V. 3 mathematics SA items
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Table 1.2. Description of Cases

Hand Score from
Hand Scoring Set Scoring Training Validation Engine
Scoring Size Engine Set Size Set Size Only Size
0 No NA No NA NA NA
1 Yes 1,800 No NA NA NA
2 Yes V set only Yes 0 500 All Available
3 Yes T&V setonly | Yes 1,000 500 300
4 Yes T&V setonly | Yes 1,500 1,000 NA

Table 1.3 and 1.4 provides the total number of items selected in each of Cases 1, 2, 3, and 4 by
item type and performance task membership once the above rules were applied.
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Table 1.3. Number of ltems of Each Score Type and Assigned Scoring Case, ELA/literacy.

Constructed- : Number of Items
Content Area Response Type PT Assigned Case Assigned
1 32
Essay Y 3 12
4 5
1 1
N 3 372
NL 4 2
ELA/literacy 1 95
Y
3 45
3 36
N
4 2
SA 1 5
Y 3 3
4 1
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Table 1.4. Number of ltems of Each Score Type and Assigned Scoring Case, Mathematics

Constructed- . Number of ltems
Content Area Response Type PT Assigned Case Assigned
0 22
N
EQ 2 309
Y 2 224
1 2
N 3 56
NL 4 2
Mathematics 1 53
Y
3 15
3 28
N
4 2
SA 1 133
Y 3 36
4 1

Selection of responses.

The number of on-grade responses for each item varied from less than 500 to more than 12,000. To
select the scoring samples reflected in Table 1.2, random samples were drawn from the response
data for the item stratified on IEP status, LEP status, and ethnicity, Note that the proportions for
each of these strata were based on the proportions in the pilot sample for each item; adjustments
were not made to the proportions as the test delivery engine randomized assignment of test form
and CTB wanted to ensure the randomization was not disturbed by oversampling in any field.

Selection of items for each engine.

Finally, CTB determined which Automated Scoring engines will receive each item. Total counts are
represented in Table 1.5.

. Case 1 items will not go to Automated Scoring engines but will be routed to hand-scoring
systems only.

. Case 2 items will go to the AIR-EQS engine.
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Case 3 items
— All NL items will be routed to the AIR-PROP and MI engines.

] In ELA/literacy, a subset of 5 of these will also be sent to the ASAP 1,
ASAP 2, ASAP 3, ASAP 4, and ASAP 5 engines.
] In Mathematics, a subset of 3 of these will also be sent to ASAP 1,

ASAP 2, ASAP 3, ASAP 4, and ASAP 5 engines.
— All SA items will be routed to the Ml engine.

] In ELA/literacy, a subset of 5 of these will also be sent to the ASAP 1,
ASAP 2, ASAP 3, ASAP 4, and ASAP 5 engines. A further subset of 2 will
also be sent to LightSIDE.

L] In Mathematics, a subset of 2 of these will also be sent to the ASAP 1,
ASAP 2, ASAP 3, ASAP 4, and ASAP 5 engines. A further subset of 1 will
also be sent to LightSIDE.

— All Essay items will be routed to the AIR-OSE, CTB-Bookette, LightSIDE, and Mi
engines.
Case 4 items

— All NL items will be routed to the AIR-PROP, LightSIDE, MI, ASAP 1, ASAP 2,
ASAP 3, ASAP 4, and ASAP 5 engines.

- All SA items will be routed to the LightSIDE, MI, ASAP 1, ASAP 2, ASAP 3, ASAP 4,
and ASAP 5 engines.

— All Essay items will be routed to the AIR-OSE, CTB-Bookette, Lightside, MI, ASAP
1, ASAP 2, ASAP 3, ASAP 4, and ASAP 5 engines.
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Table 1.5. Scoring Engine Clients and Item Counts by Score Type

Chapter 1.:
Automated Scoring Plan

Score AIR- AIR- AIR- AIR- LIGHT
Content Type Case OSE PROP GRS EQS CTB SIDE ASAP1 ASAP2 ASAP3 ASAP4 ASAP5
Essay
4 5 5 5 5 5 5 5 5 5
3 417 417 5 5 5 5 5
ELA/literacy NL
4 2 2 2 2 2 2 2 2
3 2 39 5 5 5 5 5
SA
4 3 3 3 3 3 3 3
EQ 2 533
3 71 71 3 3 3 3 3
NL
Mathematics 4 2 2 2 2 2 2 2 2
3 1 64 2 2 2 2 2
SA
4 3 3 3 3 3 3 3
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Chapter 2: Criteria for Automated Scoring Acceptance

The content of an assessment, the conditions of measurement, and the examinee population are the
three broad characteristics of an assessment that define the construct represented by a test score
(Kolen, 2011). When Automated Scoring is used to score an assessment, in addition to the
evaluation of statistical thresholds, these three characteristics must also be documented and
inspected as important pieces of validity evidence for the assessment. This is because Automated
Scoring is one facet of the conditions of measurement while simultaneously being one facet of test
content. Though the items remain the same regardless of whether Automated Scoring or human
scoring is used, in the Automated Scoring method, the content assessed depends on the features
and statistical techniques a scoring engine uses to model human scores as well as the accuracy of
the modeling process (Schneider, Waters, & Wright, 2012). Moreover, the examinee population upon
which the engines are trained and evaluated should be shown to represent the population of test
takers (Higgins, 2013a).

In Automated Essay Scoring (AES), the human-engine relationship is a central benchmark for
evaluating the AES model. As human-human agreement served as benchmarks for reliability of AES
scoring, measures used to assess human-human agreement were adopted to evaluate engine-
human agreement. The human-engine relationship is intended to evaluate the reliability of scores
derived from the AES engine, similar to the way the human-human relationship is interpreted as
reliability evidence for human scoring (Attali & Burstein, 2006). The same is true when Automated
Scoring is used to score other types of constructed-response items. A second benchmark examines
how the engine-human relationship compares to the human-human relationship. Should the engine-
human relationship be similar to (i.e., no more than 0.10 below the human weighted kappa value) or
exceed that of two humans during the model building validation studies, then the engine is generally
accepted for operational work (see Williamson, Xi, and Breyer, 2012, for a discussion). Note that
both of these benchmarks focus on scores rather than the processes underlying the production of
scores by a human or an engine.

Weighted kappa has recently been the primary focus for Automated Scoring evaluation. Scoring has
traditionally been considered acceptable if the human-engine weighted kappa for a prompt is
above 0.70 (Condon, 2013; Higgins, 2013a). In the recent Automated Student Assessment Prize
public competitions, weighted kappa was used as the sole criterion to rank order public competitor
success in modeling engines. It is possible, however, for engines to have high weighted kappas yet
not model the human score distributions in terms of means and standard deviations. Therefore,
Williamson, Xi, and Breyer (2012) describe a framework based upon multiple statistics (referred
hereafter as the Educational Testing Services [ETS] framework) that are used in combination to
evaluate the engine quality in comparison to the human rater quality for each item. Engine scores
are evaluated and compared to human scores on the item level in order to diagnose whether
suboptimal results are due to (a) an engine’s inability to reliably score student responses for a
particular item or (b) attributes of an item’s design that impede reliable scoring by humans (Higgins,
2013a). Included in the ETS framework is the standardized mean difference (SMD) between the
human scores and engine scores at both the population and subpopulation level. In 2011 CTB
adopted the ETS framework (See Table 2.1), with some minor adjustments.

The ETS framework is described in depth by Williamson, Xi, and Breyer (2012), Ramineni and
Williamson (2013), and Higgins (2013a); thus, it will not be discussed in this proposal. Interested
readers should refer to these publications and manuscripts. Rather, we focus on the minor

10



Smarter Chapter 2:
Balanced Criteria for Automated

Assessment Consortium SCO ri n g ACCe p ta n Ce

adjustments that CTB has made to the ETS framework for our operational Automated Scoring
system.

Developers and users of the ETS framework have noted that measuring consistency with human
raters in terms of the percent exact agreement is problematic. Exact agreement percentages are
related to the number of score points in the rubric and the distribution of responses along the scales.
Bridgeman (2013) noted that high agreement between two raters can occur when raters are
truncating the rubric score range. When raters are making use of four or more points, he noted a
review of this index makes sense. These observations are all correct. CTB has found an engine’s
weighted kappa may be high even though the engine exact agreement rate in comparison to humans
is low. In this situation, engines are usually giving adjacent scores to humans so that both the
percent agreement and kappa statistics are not comparable to humans. For this reason, CTB also
monitors engine performance for a notable reduction (of >0.05 difference) in perfect agreement
rates between the human-human and human-engine scores.

Williamson, Xi, and Breyer (2012) flag the SMD if the difference between automated scores and
human scores is greater than 0.15 in absolute value. The purpose for this check is to ensure that the
distribution of automatically derived scores is centered with human scoring in order to avoid
problems with differential scaling. Similarly, they flag the SMD for a subgroup if the difference
between automated scores and human scores for that subgroup is greater than 0.10 in absolute
value. Because the larger the population SMD value the more likely the subpopulation SMD value
will be flagged, CTB reduced the amount of SMD separation tolerated to flagging the population SMD
if it exceeds 0.12 in absolute value. CTB will also provide the direction of this index for the population
and subpopulation. All other indices are used as originally specified in the ETS framework. CTB
proposes to use the modified ETS framework found in Table 2.1, given that the Smarter Balanced
Assessment Consortium goal is to use the automated score as the student’s score of record for
computer adaptive testing (CAT) purposes if feasible, and because this framework closely aligns to
the recommendations made by Higgins (2013a).

Data Sources for Engine Evaluation

CTB will evaluate the results of Automated Scoring for Case 3 and Case 4 items which receive full
engine training and validation processes and Case 3 items that are validation only items according
to the thresholds set forth in Table 2.1. In addition, CTB will include evaluations of the demographic
representativeness of the training and validation samples for each item to the census population of
record in the data files. CTB will also evaluate how alignhed the features available for use in
Automated Scoring engines are to the construct, in keeping with recommendations of Higgins
(2013a). In addition CTB will evaluate highly discrepant human-engine papers for subset of items
that warrant such an investigation to better understand research findings. Outside of the scope of
our study, given the data sources available and our proposal response, are the relationships of
automated scores to external measures and to indices based student’s reported test scores.

11
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Table 2.1: Statistical Criteria for the Evaluation of Automated Scoring Engines

Flagging Criterion

Weighted Kappa for engine score and
human score

Flagging Threshold

Weighted Kappa less than 0.70

Pearson correlation between engine score
and human score

Correlation less than 0.70

Standardized difference between engine
score and human score

Standardized difference greater than 0.12 in
absolute value

Degradation in weighted Kappa or
correlation from human-human to engine-
human

Decline in weighted Kappa or correlation equal
to or greater than 0.10

Standardized difference between engine
score and human score for a subgroup

Standardized difference greater than 0.10 in
absolute value

Notable reduction in perfect agreement
rates from human-human to engine-human

Decline equal to or greater than 0.05

12
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Chapter 3: The Relationship between Sample Size and Engine Reliability

The score a human rater gives a student for a constructed-response item is an approximation of the
student’s true score on that particular prompt plus rater error plus random error. By removing
sources of rater error from the engine training process, it is possible that the accuracy of the engines
and the validity of test scores may be increased. For this reason users and creators of AES systems
use different methodologijes for building training sets, typically using information about a response
from more than one human rater (Foltz, Streeter, Lochbaum, & Landauer, 2013; Rich, Schneider, &
D’Brot, 2013, Ramineni, Williamson & Weng, 2011). Dikli (2006) hypothesized that more accurate
engines could be built by taking the average of hundreds of reads of the same response.

Although averaging hundreds of reads to estimate the true score of an essay is a reliable way to
generate the information necessary to train engines and may improve engine accuracy, it is also
unfeasible due to time and cost constraints. A more plausible and cost efficient approach to
improving the accuracy of scores derived from automated engines may be to add to the number of
papers in the training sets. Bejar, Williamson, and Mislevy (2006) noted that the number of
performances being observed limits the precision of measurement because each performance “is
itself an imperfect indictor of the examinee’s proficiency even if it was scored without error (p.63).”
Larger training sets may provide better representation regarding what a true score for each point on
a rubric represents.

The ideal size of a training set has yet to be established. The Automated Scoring literature has
typically shared the lower bound training set size. In CTB’s own development efforts, we have found
that some short constructed-response items can be successfully trained using 150 valid responses
per score point and validated using 100 responses per score point (Leacock, Messineo, & Zhang,
2013). This response count is similar to what was reported for a NAEP study that used ETS’ ¢-
raterTM (Sandene, 2005). In the automated essay scoring literature, the reported size of training
sets has been lower than what has been reported for short answer constructed-response items.

Researchers have reported that surprisingly few papers are necessary to adequately train AES
engines. Elliott (2003) reports that typically 300 or more papers are necessary to build models, and
that a minimum of 20 papers are needed at the tails of the scoring rubrics. He did note, however,
that models have been built with as few as 50 papers. Similarly, Foltz, Streeter, Lochbaum, and
Landauer (2013) report that around 500 papers are needed for high stakes purposes. Rich,
Schneider, and D’Brot (2013) wrote that for automated essay scoring a minimum of 60 responses
per score point (on a 6-point rubric) was necessary and reported 250 responses are typical for
validation sets. With the exception of Rich et al., the reported training set sizes have not been linked
to human-engine agreement statistics so it is difficult to ascertain the accuracy of engines trained
with small training sets.

Recently, the William and Flora Hewlett Foundation hosted the Phase | and Phase Il event of the
Automated Student Assessment Prize (ASAP) in which educational vendors and private individuals
developed automated essay scoring engines for eight prompts and short constructed-response item
scoring engines for 10 prompts (Shermis & Hamner, 2013, Shermis, 2013). Essay training sets
provided by ASAP to the study participants ranged from 918-1,805 cases, and short constructed-
response item training sets ranged from 1,278-1,799. It is likely that the actual training sets
vendors and private individuals used for their internal model building process were somewhat
smaller because participants likely created validation sets for their own use. Using a validation set
size of 250 responses, we can expect that the typical training set used for model building may have
ranged from 668-1,555 responses for essays and 1,028-1,549 for short answer constructed-
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responses items. For approximately 50% of the essays, the human-engine weighted kappas
exceeded those of the human-human counterparts and for the other 50% of essays, the human-
engine weighted kappas were slightly lower than those of two humans (Shermis & Hamner, 2013).
For the short answer constructed-response items no human-engine statistics were comparable to
the human-human statistics (Shermis, 2013). Given the generally large training sets available in
these studies, it does suggest that the size of the training set may not be the only influence on the
ability of the engines to score accurately. The engine quality is dependent upon the accuracy of the
human-human statistics and perhaps, the attributes of the items themselves (Leacock, Messineo, &
Zhang, 2013).

Purpose

The size of the sample for which Automated Scoring engines may be sufficiently trained for high-
stakes assessments for both Automated Essay Scoring purposes and short answer constructed-
response Automated Scoring purposes as well as the size of the validation set has not been the
subject of study in the research literature, therefore, the purpose of this study is to investigate the
following questions:

. What is the optimal sample size needed to training an Automated Scoring engine?
. What is the optimal sample size needed to validate an Automated Scoring engine?
Methodology

Data Source

Case 4 items, described earlier in this document, will be the data source for this study. Therefore five
randomly selected essay items, five randomly selected ELA/literacy constructed-response items, and
five randomly selected mathematics constructed-response items administered as part of the online
pilot will be investigated. For each prompt, 2,500 responses will be scored by human readers: 1,500
responses will be scored from a training set and 1,000 responses will be scored for a validation set.
Each response will receive two human reads. If the two human scores do not agree, the response will
be routed to a senior human reader whose score will become the human score of record.

Procedures

After the initial model building and scoring phase of the pilot administration is complete, CTB and its
partners will implement this special study. Using the score of record with condition codes dropped (a
condition code is any special code assigned to an essay by human scorers to indicate that an essay
cannot be scored according to the scoring rubric) from the sample, CTB and its parthers will
investigate the mean, standard deviations, and frequency distributions, and the percentage of total
papers at each score point for all papers for the total score and at the trait level in the training set
and validation set. CTB and its partners will need to randomly subset the essays into training sets (T)
and validation sets (V) of varying size to implement the study.

Using the features originally selected for the production scoring, CTB and its partners will retrain the
engines with stratified random samples of papers from the training set that range in size from 100
responses to 1,500 responses increasing in size by increments of 100. For each of the training sets,
scoring engines will be evaluated using the ETS framework using a stratified random sample of
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papers from the validation set that range in size from 100 responses to 1,000 responses increasing

in size by increments of 100. Recommendations regarding the optimal training and validation set
sizes that inform the field study will be reported to Smarter Balanced Assessment Consortium, as

well as a report of the study findings.
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Chapter 4: Engine Read and Read-Behind Scenarios

Automated Scoring is quickly increasing its role in educational assessments (Bejar, 2011). In 2009,
ETS began using its Automated Essay Scoring system, E-rater, in place of a second human score on
the Test of English as a Foreign Language (TOEFL, Trapani, Bridgeman, and Breyer, 2011). Both
West Virginia and Utah now use an AES as the student score of record for their large scale
summative assessments used for accountability purposes (CTB, 2010; Shermis & Hamner, 2013).
The Partnership for Assessment of Readiness of College and Careers, a consortium of 24 states
collaborating to develop a common assessment, plans to use a combination of human and
Automated Scoring in the consortium’s future assessment system. The Smarter Balanced
Assessment Consortium has recently requested to include Automated Scoring in their piloting and
field testing process.

One benefit of using Automated Scoring, in addition to cost savings (Attali & Burstein, 2006), is that
engines can ensure that scores from one student to another do not drift based upon external
influences, which may not always be the case when human scores are used. Human scores on a
large scale assessment are not always interchangeable with one another due to rater effects such as
fatigue effects, halo effects, range restriction, leniency, and severity (Saal, Downey, & Lahey, 1980;
Zhang, 2013). These rater effects may also vary during the scoring window as a scoring project
proceeds (Myford & Wolfe, 2009). Ramineni and Williamson (2013) reported that admissions or
licensure tests often have two human raters score each performance task in an effort to reduce
sources of rater effects. This allows scores that are discrepant to be resolved. The same solution is
not always feasible in K-12 educational testing. Because states have required cost savings in recent
years, many states have moved to a single-rater-to-response scoring model. The quality of a single-
rater-to-response scoring model is typically evaluated through read-behinds and check reads. Read-
behinds are meant to provide evidence that raters are scoring consistently (or Automated Scoring
engines are scoring accurately), and check reads provide evidence raters are applying the scoring
rubric to student responses accurately (McClellan, 2010).

Similarly, when Automated Scoring systems are used for a single-rater-to-response scoring model,
the quality of the engines are typically evaluated through validation studies, read-behinds, and check
reads (Schneider & Osleson, 2013). During the validation study process, the engine-human
relationship is used to evaluate the quality of scores derived from the Automated Scoring engine.
Read-behinds from humans are meant to provide ongoing evidence that engines are generalizing
from a validation study into a production environment, and check reads provide evidence that
human and engine scores are comparable to one another. Although this usage of Automated Scoring
reduces the number of human reads, which lowers costs and allows student responses to be scored
in real time or quickly thereafter, it does not allow sufficient time to “troubleshoot” should a lead
psychometrician need to investigate issues related to engine generalizability, newly discovered
gaming techniques, or human rater drift concerns. This may be why Zhang (2013) posited that
Automated Scoring was not yet sufficiently advanced enough to support its use in the single-rater-to-
response mode.

Zhang (2013) wrote that in order for Automated Scoring to be used as the score of record three
criteria must be met: (a) features used in scoring should be transparent, (b) validity evidence should
warrant the intended use of the scores, and (c) quality control measures (see Bejar, 2011) should be
able to detect aberrant responses that may be attempts to “game” the system or that are outside of
the boundary of papers used to train and validate a particular system. He also noted that Automated
Scoring could be used in conjunction with human scoring in two main ways. First, the score of record
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could be based on a linear combination of the human score and engine score. Second, the
Automated Scoring could be the read-behind of the human score. Although both of these approaches
reduce the number of human reads which lowers costs and saves time, these approaches are not
likely viable if the goal is to score student responses in real time or quickly thereafter. It should be
noted, however, whether engine scores are used alone or in conjunction with human scores, there
will be some portion of responses identified as needing to be routed to humans in compliance with
the quality control measures of any Automated Scoring system (Jones & Vickers, 2011).

Bennett (2011) proposed an interesting potential resolution to the dilemmas noted above. He
suggested independently training and deploying two engines for each item and routing papers to a
human read when the engines were discrepant. This approach would reduce the number of human
reads which lowers costs and saves time, may score a significant number of student responses in
real time or quickly thereafter; but it still requires some unknown percentage of responses to be
routed to human raters.

Purpose

To our knowledge this idea has not yet been investigated in the research literature. Therefore, the
purpose of this study is to contrast the scoring accuracy for the score of record for each of the
following scenarios to that derived from two humans. The following cases will be investigated:

. Scores derived from two engines in which discrepant scores are routed to an expert rater.
. Scores derived from one engine.
. Scores derived from one engine and one human in which the engine score contributes to

the student score of record by averaging the two scores and rounding to the nearest
integer when scores are adjacent and in which nonadjacent scores are routed to an
expert rater.

. Scores derived from one engine and one human in which the human is the score of
record and in which nonadjacent scores are routed to an expert rater (“engine read-
behind”).

. Scores derived from two humans in which rater 1 is the score of record and in which

nonadjacent scores are routed to an expert rater.
Methodology

Data Source

Case 4 items, described earlier in this document, will be the data source for this study. Therefore five
randomly selected essay items, five randomly selected ELA/literacy constructed-response items

(2 NL and 3 SA), and five randomly selected mathematics constructed-response items (2 NL and 3
SA) administered as part of the online pilot will be investigated.

Procedures

For each of the Case 4 items, CTB will have 1,000 responses in the validation set along with
automated scores from each of the vendors who score the particular item type. Each Case 4 essay
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will have scores from nine independently developed scoring engines. Each Case 4 ELA/literacy NL
item will have scores from eight independently developed scoring engines, and each Case 4
ELA/literacy SA will have scores from seven independently developed scoring engines. Similarly, in
mathematics, each Case 4 NL item and SA item will have scores from seven independently
developed scoring engines. For the purposes of this study, after evaluating the engine functioning
using the ETS framework, CTB will select the two engines it evaluates as the top performing engines
to use for the mock-production scoring with two engines. The highest performing engine will be used
in the single engine score of record and engine-to-human comparisons.

CTB will use the ETS framework to compare the accuracy of each approach in comparison to what
would be observed with two humans. In addition to the agreement statistics, CTB will provide
contingency table comparisons showing the effect on student scores under each scoring method for
each item so that the Smarter Balanced Assessment Consortium can determine the practical effect
each approach would have on the student score of record. We will use the following human score
resolution method as the basis of the study. The rater 1 score is the score of record when rater 1
score is adjacent to the rater 2 score. The rater 3 score is the score of record when rater 1 and

rater 2 are discrepant. CTB will also analyze highly discrepant responses under each of these
scenarios.
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Chapter 5: Automatic Identification of Papers Likely to Require Human Scoring

Automated Scoring systems are designed to predict the score that a human rater would assign to a
given response based on the associated rubric. One of the challenges associated with the
application of these systems to high-stakes testing is that scores from engines will deviate from
human scores for some responses. Although metrics to evaluate engines describe overall scoring
consistency compared to humans (see earlier section on Criteria for Constructed-Response Iltem
Acceptance in Part 2 of this document) such indexes neither identify which responses are likely to
receive scores discrepant with human scores nor include a statistical measure of risk associated
with use of the engine.

In a single-engine-score-to response scenario it is important to know which responses are sufficiently
aberrant such that they are at risk of being discrepant with what a human likely would have given. In
such situations, flagged responses should be routed to humans for scoring. At the engine level, it is
important to understand the percentage of item responses that would need to be routed for human
scoring based upon the item level risk index as well as potential other engine level risk indicators.

Engines may provide a predicted score that is discrepant from a human score for the following two
reasons:

1. The response features fall outside of the training set feature space; the response is novel
or an outlier. The ability to identify a novel response or an outlier given the highly
dimensional feature space of many of the Automated Scoring engines can be numerically
challenging and even intractable; therefore, careful selection of an index used to quantify
the risk can reduce costs related to routing responses likely to be scored well by engines
to hand scoring (reduce false positives) while simultaneously providing a means to
identify papers that should be sent to hand scoring (reduce false negatives). The need to
identify novel responses or outliers in relation to a feature space used for an automated
classification engine is not unique to the field of educational assessment (see, for
example, Furusjo, Svenson, Rahmberg, & Andersson, 2004); yet, due to the potential
high-stakes use of scores from Automated Scoring engines, is of great importance to the
field.

2. The engine model does not fit the training data sufficiently, or was tuned insufficiently in
terms of the tradeoff between bias and complexity (overfitting). Some of the machine
learning methods deployed for the Smarter Balanced Assessment Consortium can
provide response-level residuals, a probability that a predicted score will match the
expert assigned score, or other measures.

At the item level, a risk index may help to expand and strengthen evaluation criteria for Automated
Scoring engines, informing decision making regarding which of the multiple engines to deploy,
whether to include an item in CAT, whether to recommend hand-scoring for an item, or to
recommend use cases for which the Automated Scoring of the item is valid (e.g., formative use
versus high-stakes use). Multiple techniques may be of value when calculating a risk index, for
example, calculating the likelihood of an incorrect categorization or calculating the prediction error
(defined by loss and complexity functions) when machine learning techniques are deployed in an
engine. To date, CTB is not aware of published research comparing the evaluation of Automated
Scoring engines using measures such as these to the evaluation of Automated Scoring engines
based on comparisons of human-engine and human-human agreement statistics. In addition, the
typical measures of engine performance for engine-human and human-human agreement rely on
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rule of thumb thresholds rather than statistical tests for difference in performance (Breyer et al.,
2012).

Purpose

The purpose of this study is to investigate possible methods for automatic identification of responses
for which automated scores are likely to be discrepant with human scores. This study will investigate
techniques to (a) identify the risk that a response to a given item will be or has been discrepantly
scored and (b) quantify the risk at the engine level so that the likelihood of a discrepant score being
assigned by an engine may be understood.

Methodology

Data Source

Case 4 items, described earlier in this document, will be the data source for this study. Therefore five
randomly selected essay items, five randomly selected ELA/literacy constructed-response items (2
NL and 3 SA), and five randomly selected mathematics constructed-response items (2 NL and 3 SA)
administered as part of the online pilot will be investigated.

Procedures
The study will include a review of literature related to the following:

. Methods for the calculation of training error and prediction error for the various machine
learning techniques used by the Automated Scoring engines when scoring the
constructed-response items (see, for example, Hastie, Tibshirani, & Friedman, 2009).

. Outlier identification and novelty identification as it relates to proximity of validation set
responses to feature spaces (Hodge & Auston, 2004; Cerioli & Farcomeni, 2001;
Chandola, Banjeree, & Kumar, 2009).

Following a review of the literature, a subset of engines and related feature sets will be used as
empirical examples for the exploration and demonstration of methods identified as promising during
the literature review. Responses flagged using response-level risk indexes will be compared against
responses from the validation set receiving discrepant and adjacent scores to determine the
potential for added value of using these indexes to flag responses for human scoring. Note that while
collateral information may provide an additional avenue for identification of responses likely to be
discrepantly scored by automated engines, methods requiring use of collateral information will not
be included in this study due to limited collateral information available in this pilot administration.
Engine-level risk indexes based on prediction error statistics will be compared against the human-
human and human-engine agreement statistics to determine the potential for added value of
analysis of engines using these indexes.
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Chapter 6: Towards Predicting Whether a Short Constructed-Response Item Can be
Scored Using Automated Scoring Engines

Streeter, Bernstein, Foltz, and DeLand (2011) reported that about half to two-thirds of the short-
answer science items they investigated could be scored automatically with accuracies similar to
humans. That is, one-third to one-half of the items could not be scored using Automated Scoring.
This drop-out rate is consistent with CTB’s own experience. In order to make Automated Scoring of
short answer constructed-response items a viable option, the drop-out rate needs to be reduced
significantly. The goal of this study is to improve the Automated Scoring rate of short answer
constructed-response items by identifying the characteristics of items that are scored successfully
using this technology.

Representatives from ETS, Pearson, and The College Board (Williamson et al., 2010) summarized
the desired and challenging characteristics of short answer constructed-response items and their
rubrics should Automated Scoring be the goal:

One challenge associated with such systems is to develop items with definitive correct
answers that the Automated Scoring system can verify. If the items call for opinions or other
unverifiable discussion, the expected response set becomes less certain and more difficult
for the Automated Scoring system to handle. Thus, a variety of factors influence the success
of these systems for scoring, including the number of potential concepts that could be
generated in a response, the variety of ways in which these concepts might be expressed,
and/or the degree to which there is a clear distinction between correct and incorrect
representations of the concept, among others (p. 3).

Interestingly, Leacock, Messineo, and Zhang (2013) found that many of these same characteristics—
definitive answers, a limited number of concepts, etc.—also contribute to human rater reliability. One
way to ensure an item has definitive correct answers is to ask that item developers provide analytic
rubrics. Leacock, Gonzalez and Conarroe (in process) looked at the effects of using analytic versus
holistic rubrics on eight ELA/literacy short answer constructed-response items. In the first round of
scoring, the rubrics contained much holistic language. For example, the difference between full- and
partial-credit was the difference between "sufficient evidence” and “limited evidence.” They revised
the holistic components of the rubrics into analytical language that explicitly stated the concepts and
the requirements for each score point—including the score of zero. In addition, a sample answer for
each score point was created. Based on the revised rubrics, new anchor papers were pulled and
used to retrain the raters. With the analytic rubrics, inter-rater reliability, as measured by weighted
kappa, rose from an average of 0.66 to an average of 0.93.

Currently, there are two options for determining whether short answer constructed-response items
are scorable using Automated Scoring. The first option is to have Automated Scoring experts
examine the individual questions and their rubrics and make a guesstimate of each one’s scorability
based on factors such as those suggested by Williamson et al., (2010). The drawback of this
approach is that Automated Scoring potential may be lost based upon a guesstimate. In our
experience, some items that experts have declared unscorable via Automated Scoring get very good
scoring results. The second option is to apply Automated Scoring methods to all of the items and see
which will work based on agreement with a held-out validation set. The drawback of this approach is
the expense of generating highly validated human scores for a substantial number of responses to
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each item coupled with the expense of building engines that may be unusable. A potential third
option is to understand empirically which features affect whether or not an item may be successfully
scored using automated techniques, and to train item writers to use these attributes during the item
development process.

Purpose

The goal of this research study is to determine whether we can learn to predict, in advance of
scoring, whether short answer constructed-response items can be scored automatically based on
surface features found in (a) the metadata, (b) the item stem, and (c) the scoring rubric. This
research extends the recent work of Leacock et al., (2013). They found that human-engine score
differences were significant when the number of possible supporting text-based details from a
reading passage was greater than five. Because only 41 of 76 ELA/literacy items in this study had
human agreement rates that were acceptable (as measured by a weighted kappa of 0.70 or higher),
Leacock and colleagues investigated rater agreement based upon the same surface features as
were investigated for the Automated Scoring engines. They found rater agreement declined
significantly when (a) there were more than five possible text-based supporting details, (b) there was
more than one possible correct answer, and (c) the correct answer required the student to make an
inference. Thus, it may be possible to improve the probability of an item being successful with
Automated Scoring by improving the quality of the human scores if we can identify those features
that correlate with human rater reliability.

CTB will extend the work of Leacock et al (2013) in a number of ways. We will do the following:
Add mathematics to the subject area coverage.
Increase the sample size of items investigated from 41 to several hundred.

Increase the metadata features investigated, listed below. For example, in the previous
study, all but a few of the items had a DOK of 2. In this study, there is enough range in
DOK to include it as a variable. In the previous study, the only metadata features used
were grade and number of score points.

4, Introduce new and modify previous hand-coded features such as those in Section C
below.

Increase the number of coders: each feature will be coded by two people.

Evaluate on both MI's PEG (for all items) and AIR’s propositional engine (for a subset of
the items)

7. Expand the evaluation criteria from weighted kappa of 0.70 to the ETS framework.
The features that will be included in this study are listed below.

l. Many of the features can be taken directly from the metadata: These may include, but
are not limited to:

a. Depth of Knowledge (DOK)
b. Primary Claim

c. Primary Assessment Target
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Stimulus Type

Predicted Item difficulty

Achievement level descriptor classification
Grade

Number of score points

i. Stimulus type

j. Whether the item is part of a Performance task or not.

1. Features that can be semi-automatically extracted from the rubric include, but are not

limited to:

Counts of the words and numbers in the exemplar (averaged if more than one exemplar).

Il Features that require human judgment and each value needs to be hand-coded by two
persons. These features will include, but will not be limited to:

a. English language arts/literacy and Mathematics:

i.
ii.
iii.
iv.
V.

Vi.
Vil.

Analytic or Holistic rubric

The analytic rubric has holistic elements

The analytic rubric clearly states the requirements for each score point
Scoring rule complexity

Is there a definitive correct answer that can be expressed in a limited
number of ways? (We need to establish whether coders agree on this
possible variable)

Is there a choice of correct concepts?

Number of synonyms/paraphrases item writers included for the
proposition scoring engine

b. English language arts/literacy only:

Question type: for example, Explain with Supporting Detail, Define a Word
or Phrase, Author intent, etc

Number of possible text-based supporting examples (when delimited in
the rubric)—the coder may need to inspect the reading passage as well.
Answer found in text versus inference

Whether there is more than one possible correct answer. For example,
the student chooses an argument and defends it.

¢c. Mathematics Only:

Question type: for example, Use and Apply,
Analyze/Categorize/Hypothesize, Answer and Explain (Schneider, Huff,
Egan, Gaines, and Ferrara, 2013).
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Methodology

Scoring Engines

We will use eight scoring engines in this research: Measurement Incorporated’s (MI) Project Essay
Grade (PEG), AIR’s propositional scoring engine, LightSIDE and the top five engines that were
developed for phase 2 of the ASAP competition (Shermis, 2013). All of the short answer constructed-
response items will be scored by MI. A subset of them, for which item writers supplied paraphrases
and synonyms in their example answers, will be scored by AIR’s proposition engine. Twenty-five will
be scored by each of the five ASAP winners and 13 will be scored using LightSIDE (which was
developed for essays, not short answer constructed-response items).

Data Source

The data set will comprise manually scored Pilot validation sets for a subset of randomly selected
items from 479 ELA/literacy and 140 mathematics Case 3 and Case 4 items. To determine whether
the features can predict accurate Automated Scoring of items, we will conduct a multiple regression
analysis using features as independent variables and the acceptance or rejection of an item for
Automated Scoring as the dependent variable

It has long been established that Automated Scoring accuracy for short answer constructed-
response items is improved by automated spelling error correction (Leacock & Chodorow, 2003). Six
of the eight engines in this study use spelling correction—but all use different algorithms. We propose
to compute the accuracy of the spell correction algorithms for all vendors who agree to send CTB
their spell corrected output for two or three items.

Procedures

Once the set of features whose values need to be hand-coded is finalized, CTB researchers will
develop a protocol for training the coders. The protocol will include training coders on the
subcategories of each feature through the use of training sets and along with independent scoring
and discussion of a qualifying set for each feature. Hand coding will be done by CTB content experts
in ELA and mathematics.

CTB will hold a three-day workshop to train and qualify coders. The first day will consist of training the
coders using the training sets, independent scoring of the qualification set, as well as group
discussion centered in clarifying questions. Each feature for each item will first be independently
coded by two coders. In cases where the coders disagree, they will work together to resolve their
differences. A random selection of items will be periodically re-coded to ensure consistency of
protocol over time.

To determine whether the features can predict accurate machine scoring of items, we will conduct a
multiple regression analysis using the features as independent variables and the evaluation metric
as the dependent variable.

IV. Spell Correction Evaluation. Most of the eight automated scoring engines try to fix
spelling errors when they encounter a non-word (one that is not recognized by their
dictionary) in a student response. We will evaluate the methods used by the different
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engines. First, we need to develop a spell correction evaluation protocol for all non-words
in the responses. For example, if the intended word for lefs is the plural noun leaves and
the spell corrector changes it to the singular noun, leaf, then it would be considered an
appropriate correction. However, correcting it to the verb left would be an error. Thus
coders must be trained using the above protocol for this phase of the study as well.

All spell checkers use edit distance (the number of keystrokes it takes to transform a non-word to a
recognized word) to generate a list of suggestions. More sophisticated spell checkers prune and
reorder the suggestions based on (1) the context of the non-word—those words that surround it,
and (2) the likely pronunciation of the non-word.

Code accuracy on 1,000 spelling errors. The same set of the items will be given to both
coders and their agreement will be monitored. In cases where the raters disagree, they will work
together to resolve their differences. To evaluate the accuracy of each engine, we will compute
percentage of spelling errors that were accurately corrected for each engine.
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Chapter 7: Detecting Gaming in Automated Scoring Systems

Lochbaum, Rosenstein, Foltz, and Derr (2013) defined gaming in Automated Scoring as a student’s
“deliberate injection of construct-irrelevant features” into a response in order to create an observed
increase in performance. Gaming is one risk of using Automated Scoring, and the ability of an engine
or system to detect gaming attempts should be one factor in the evaluation of Automated Scoring
system (Higgins, 2013b). Higgins found that depending upon the architecture of the Automated
Scoring system, some systems may be more susceptible to certain types of gaming attempts than
others.

The detection of certain types of gaming varies in difficulty. Overt techniques such as key banging
(where students randomly strike the keyboard creating nonsensical letter patterns) or repeating the
same words consecutively are relatively easy to catch through rule based system flags. Other
techniques such as incorporating words found in the prompt into a response or substituting words in
a response with less frequent, longer synonyms are harder to detect. This is because some gaming
techniques are also construct-relevant ways students demonstrate (and are taught to demonstrate)
their achievement (Higgins, 2013b). It is not clear whether studies that investigate substituting
words in a response with longer synonyms would, in fact, demonstrate the effect of gaming an
Automated Scoring system or validate that the system is rewarding construct-relevant achievement.

Increasing response length is a well-known gaming methodology (Powers, Burstein, Chodorow,
Fowles, & Kukich, 2001; Higgins, 2013b; Lochenbaum et al., 2013) that has been shown to inflate
student scores on both essays and short answer constructed-response items. Students typically
increase the length of their response in a variety of ways such as repeating characters, words,
phrases, paragraphs, or by padding their responses. Lochenbaum and colleagues defined padding
as adding to the length of a response without adding construct-relevant content. Rambling can
generally be one category of “padding” that humans may not recognize as a gaming attempt.
Humans will, however, typically give a rambling response a lower score. An Automated Scoring
system without a padding flag may also not recognize the response as a gaming attempt but will give
the response a higher score. Finally, it will not always be clear (although sometimes it is) whether
such response is true example of the student’s skill or an attempt to game. A studied approach of
padding (see Higgins, 2013b) has been to repeat portions of the response, append randomly chosen
academic words or groups of larger content words to the end of essays, and combinations of the two.
These techniques were found to increase scores in some of the Automated Scoring systems used in
the Smarter Balanced Assessment Consortium pilot test.

Another common gaming approach is student use of shell language. Shell language has been
defined in the literature in different ways, and its use is not unique to Automated Scoring
applications. Bejar, VanWinkle, Madnani, Lewis & Steier (2012) defined shell language specifically
within the context of persuasive and argumentative writing (or speaking) as formulaic language used
to structure an argument without being specific to the position being described. Therefore, though
the arguments may differ, students may use the same general memorized language and transition
structure to organize their writing. This technique has been found operationally in assessments with
high stakes for students interested in pursuing their education at the university level (Ramineni,
Williamson, & Weng, 2011; Trapani, Bridgeman & Breyer, 2011)

Powers el al. (2001) found using a coachable shell to be a highly successful strategy to game an
Automated Scoring system. This coachable shell technique is also similar in some respects to
plagiarism (discussed in a following section of this document). Under the coachable shell
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methodology, the student pads their response by repeating paragraphs, but rewording the first
sentence of each paragraph slightly, reordering the subsequent sentences, and using synonyms.
Thus, the essay appears to be a response to the topic, but it actually repeated paraphrases of a
single paragraph, and as a result, it may be more difficult to detect by an Automated Scoring system.

Purpose

Researchers (see Higgins, 2013b) have not widely published the susceptibility of Automated Scoring
systems to gaming strategies or the proportion of gamed responses flagged by the Automated
Scoring systems. It is highly likely that researchers have been engaging in such endeavors, but they
have not released the work publically to prevent circumvention of gaming detection methods. When
evaluating an Automated Scoring system, users must understand how (a) accurately an Automated
Scoring system flags gaming attempts and routes them to human raters and (b) susceptible an
Automated Scoring system is to a particular gaming strategy. A case can be made that should a
system correctly flag gaming attempts, it is not susceptible to such a strategy. Therefore, this study
seeks to answer the following questions:

1. What proportion of student responses on the pilot administration are coded by human
raters as gaming attempts?

What proportion of human identified gaming attempts are flagged by each engine?

How susceptible are engines to various gaming techniques?
Methodology

Data Source

Validation sets from Case 4 items that were described earlier in this document will be the data
source for this study. Therefore 5 randomly selected essay items, 5 randomly selected ELA/literacy
constructed-response items (2 NL and 3 SA), and 5 randomly selected mathematics constructed
items (2 NL and 3 SA) administered as part of the online pilot will be investigated.

Procedures

In this study, CTB will extend the work of Higgins (2013b) to investigate both short answer
constructed-response items in ELA/literacy and mathematics as well as essays. In addition to
simulating increased length through the use of repeating a response, randomly adding content
words, and randomly adding academic words CTB will add the condition of repeating the response
through a paraphrase. In addition, each student response in the validation set will be coded for
gaming techniques such that we have an estimate of the attempts to game in the student population
and a quantification of the amount of true gaming each automated essay scoring system captures.
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Detecting Plagiarism in Student Essays Using Latent Semantic Analysis

Plagiarism, including direct copying and extensive paraphrasing, is increasingly a problem in
secondary and post-secondary education. For instance, 58% of high school students admitted to
plagiarism in a survey study by McCabe (Meyer, 2010). The increase in plagiarism has been linked to
the rise of the internet (Bennett, 2005; Lathrop & Foss, 2000).

Plagiarism potentially increases a student’s score on an essay and is therefore a direct threat to the
validity of that score. Score validity, the extent to which test scores support subsequence inferences
about student ability, is a central concern in educational assessment (AERA, APA, & NCME, 1999).
Although the issue of plagiarism may not be specific to automated essay scoring (compared with
other forms of gaming, e.g., Powers, Burstein, Chodrow, Fowles & Kukich, 2001), it nevertheless
needs serious attention.

Currently, the scoring engines working to support the Smarter Balanced Assessment Consortium do
not have extensive features to detect plagiarism. For longer essays, it may be possible to use some
of the technologies used in essay scoring to identify papers that are particularly similar to one
another. Unusually similar essays, especially when written during the same testing sessions, should
be flagged for review.

Given the potential impact of false positives (that is, mistakenly identifying essays as instances of
plagiarism), any automated detection can be considered only as a signal of possible plagiarism.
Flagged texts should be routed as suspicious to humans for review and policymakers for subsequent
investigation and, if necessary, collection of additional pieces of evidence to support claims that a
student has plagiarized. Besides the legal aspects (Foster, 2002) an additional factor in the
evaluation of potential plagiarism is the fact that students’ perceptions of plagiarism (Marshall &
Garry, 2005) may not be identical to the perceptions of other stake holders, e.g., academics
(Nadelson, 2007). Moreover, careful attention is needed to ensure that a detection algorithm does
not differentially flag essays written by students from certain subpopulations (e.g., English learners).

Latent Semantic Analysis

Latent semantic analysis (LSA; Deerwester, Dumais, Furnas, Landauer, & Harshman, 1990) is a
mathematical method to compute the semantic similarity of words and texts. Informally, the LSA
process consists of the following steps:

1. A matrix is constructed based on the occurrences of terms in documents

2. The dimension of this matrix is reduced to identify semantically similar terms and
documents, producing a latent semantic space

3. Documents are represented by vectors in this latent semantic space; the distance
between two document vectors provides a measure of semantic similarity

This technique has been used successfully in automated essay scoring (Foltz, Laham, & Landauer,
1999) as well as automated formative feedback on proper of quotations and citations (Britt, Wiemer-
Hastings, Larson, & Perfetti, 2004). Moreover, LSA has been proposed as a technique to detect
plagiarism (Cosma & Joy, 2012; Ceska, 2008), where it may hold promise in detecting
rearrangement and paraphrasing, forms of plagiarism that are difficult to detect even by state-of-the-
art algorithms (Kakonnen & Mozgovoy, 2010). LSA may have two key advantages over other
plagiarism detection techniques (e.g., string matching):
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. LSA ignores word order making it less susceptible to paraphrasing

. LSA compares documents at a deeper (“latent”) semantic level, making it possible to
detect plagiarism of ideas rather than words

Purpose

CTB will conduct an exploratory study to develop and pilot an automated plagiarism detection
algorithm based on latent semantic analysis, and provide Smarter Balanced Assessment Consortium
with a research report including findings and recommendations on statistical computations that are
likely to be successful.

Methodology

After a literature review, a proof-of-concept implementation of a detection algorithm will be
developed. The performance of LSA in detecting source-code plagiarism is known depends on
different parametric settings (Cosma & Joy, 2012). It is likely that optimal performance in case of
student essays likewise requires appropriate parameters. Therefore, several algorithmic features will
be evaluated, including the following:

1. Appropriate granularity of documents (essay, paragraph, sentence)

2 Required preprocessing (e.g., stemming, stopword filtering)

3. Effective weighting of terms (e.g., normalized, IDF, or entropy weights)
4

Optimal dimensionality reduction technique (e.g., fixed number, percentage of cumulated
values, share of values, fraction; see Kaiser; Kakkonen, Myller, Sutinen, & Timonen,
2008)

5. Best similarity measures (cosine; Pearson, Spearman, Kendall correlation)

A practical problem in the development of plagiarism detection algorithms is the evaluation of their
effectiveness in a wide-range of realistic situations. Unfortunately, a large collection of correctly
identified, on-topic instances of plagiarized papers is generally unavailable for operational essay
prompts. Recently, various corpora have recently been constructed for automated plagiarism
detection, featuring natural and artificial plagiarism (Clough & Stevenson, 2011; Potthast et al.,
2012).

CTB will evaluate the relevance of existing corpora to plagiarism detection in student essays.
Additionally, we will investigate the feasibility of artificially generating a set of plagiarized papers from
a training set of essays. For example, plagiarized essays could be generated by replacing words with
synonyms or by combining paragraphs of several essays into a new paper. Once a collection of
papers has been obtained, the performance of any detection algorithm can be quantified using
statistical measures based on current research (Barrén-Cedeno, Potthast, Rosso, & Stein, 2010).

The end result of this exploratory study is a research report, describing the performance of different
algorithmic settings and recommending potentially optimal settings for performance.
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Chapter 8: Detection of Administration Anomalies

There are often multiple indicators of a security breach or an irregularity in test administration
practices. It is prudent to analyze data for evidence of a security breach or test administration
irregularity as these incidences may indicate a need for an investigation and subsequent score
invalidation. For the Smarter Balanced Assessment Consortium pilot administration, this may mean
that particular items must be handled differently than they otherwise might have been during item
analysis, calibration and equating exercises. However, given that the pilot administration does not
produce scores for students, teachers, or test sites for evaluation purposes, the motivation to inflate
scores is much lower than one might see in a high-stakes summative administration. Therefore, CTB
expects that little evidence of security breach or administration anomaly, if any, will be found.

Common analyses to date used in summative testing for the purpose of identifying a possible
security breach include detection of unusual changes in test scores over time and answer changing
behavior. However, for the pilot administration, these techniques are less relevant for the following
reasons:

. The pilot test was a one-time administration for a sample of students. There is no history
of performance on Smarter Balanced Assessment Consortium items for students or
administration sites by which to measure unusual changes in scores.

. The pilot test was administered online using linear-fixed forms. In the test delivery
platform, answer changing is largely limited to within the student’s online testing session,
with the exception of a 20-minute window immediately following the test session.
Incidences of teachers or test administrators changing answers are much less likely to
occur than on a paper and pencil linear fixed form due to the testing format.

. As this was a pilot administration, items had not yet been exposed in any test
administration. Therefore, exposure of the items is much less likely than in scenarios
where items are given in multiple administrations, such as when anchor items are used
for equating.

Purpose

Common methods of identifying possible security breaches are less likely to provide useful
information for the Smarter Balanced Assessment Consortium pilot. Therefore, CTB will perform
analysis better suited to context in which the items were administered. In some cases, these
analyses are related but more highly constrained than those listed above. CTB seeks to detect
whether the following occurred:

1. Anomalies in time of the day a test was taken. A test taken outside of typical school
hours may indicate a test administrator completed a student test.

2. Situations where (a) a test is modified after the session ends, (b) modifications include
many wrong to right responses, and (c) modifications occur frequently for a given test
administrator.

3. Aberrant responses times, indicating students are completing the tests much more
quickly than counterparts of the same ability, which may indicate some pre-knowledge.
Aberrant responses times may also indicate students taking the test for the sole purpose
of memorizing and distributing items. Again, given the stakes associated with the pilot
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and the fact that this was the first administration of many of these items, CTB expects to
find little evidence of these phenomena.

Methodology

Data Source

Data for Part 1 of this study will be exported from the AIR test delivery platform and delivered to CTB.
All tests taken will be included in this study.

Data for Part 2 of this study will be exported from the AIR test delivery platform and delivered to CTB.
Only tests on which the test was modified after the session ends will be included in this study.

Data for Part 3 of this study will include information on the amount of time each student spent on
each item (response time), the student response to each item, and the item parameters for each
item. CTB expects that item parameters will be made available by ETS following the psychometric
analyses for the pilot administration. Should the item parameters not be forthcoming, CTB will use
the response time and response data for a similar but more limited study.

Procedures

Part 1. CTB will prepare a report of all tests taken outside of typical school hours, defined
as 8:30 a.m. to 3:30 p.m. local time.

Part 2. For the set of tests for which modification occurred after the session ended, CTB will
calculate the frequency of wrong-to-right answer changes. The procedure is formulated for an
analysis with school classrooms as the unit of analysis. In this formulation, classrooms may be intact
instructional classrooms, homerooms, or any testing group that can be identified using the name or
ID of the teacher responsible for leading the test administration for that group.

In the description of the procedure, i=1,...,/ denotes the classes in the state whereas n; and m;
denote the sample size and mean number of wrong-to-right (WTR) changes for class i, respectively.
In addition, y and o denote the mean and the standard deviation of the distribution of the number of
wrong-to-right answer changes of the population of individual students in the state.

The basic idea underlying the procedure is a statistical test of the null hypothesis (Ho) that the mean
number of wrong-to-right changes for the school class constitutes a random sample from the
administration distribution of wrong-to-right changes. The hypothesis is tested against the (right-
sided) alternative (H1) that the mean number is too high to be explained by random sampling.
Classes for which Ho has to be rejected are flagged for further scrutiny. According to the central limit
theorem, the sampling distribution of m; is asymptotically normal with mean
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Mean(m,)=u
and standard deviation

SD(m)=a//n; .

The classroom flagging criterion for each classroom is adjusted for the number of test takers in a
classroom. This adjustment ensures that the flagging criterion is equally stringent for classrooms
with considerably different numbers of test takers. Considering the nested structure (students within
schools) and the potential dependencies within schools, we may incorporate the variance
component due to schools into the computation of the standard deviation.

In addition, minimizing the probability of false positive (Type I) errors in this statistical test is crucial
in this analysis. Flagging classrooms for further scrutiny is typically perceived as suspicion that
students or educators have cheated by erasing incorrect answers and replacing them with correct
answers.

The statistical procedure is as follows:

For each class i=1,...,/, calculate ,u+40'/\/n_i.

Flag the classes for which mi is larger than the result.

Statistically, the flagging criterion proposed is very conservative. The standard normal table shows
that under random sampling the (asymptotic) probability of a sample mean more than four standard
deviations above the population mean is less than 0.0001. However, rejection of Ho only tells us that
the observed mean number of wrong-to-right erasures is unlikely to be the result of random
sampling. Specifically, it does not necessarily prove any form of cheating by teachers.

The following caveats are always applicable:

1. The normal distribution holds only for large classes; for smaller classes the result is
approximate.

2. Rejection of Ho does not necessarily imply cheating. Alternative explanations are
possible.

3. The flagging criterion should thus only be taken as a stimulus to look for additional

evidence and find out what really happened in the classroom.

Part 3. CTB will use a procedure described in van der Linden and Guo (2008) to identify
aberrances in test administration related to response time. This procedure is intended for use in
computer adaptive testing, but it also is relevant to the on-line linear fixed form pilot administration.
The procedure may lay the groundwork for future Smarter Balanced Assessment Consortium
Computer Adaptive Test anomaly detection.

As noted earlier CTB assumes that item and person parameter estimates for all items and test
takers will be made available to CTB from ETS, and in addition, the administered test design is
clearly identified in the data and/or is provided by ETS. CTB will then apply the response time model
using the time per item data received from AIR. Should CTB not receive item and person parameters,
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or sufficient information regarding test design, CTB will conduct a limited analysis to simply examine
the data for instances where the time a student takes to complete a test form is significantly less
than that of other students taking the same test form with the same number correct score. In either
case summary statistics of response times will be calculated and examined.

Response time analysis is proposed for this study as, as pointed out in van der Linden and Guo
(2008):

1. Response times are continuous rather than binary, allowing information on the size of
aberrances;
2. A response time statistical check on possible aberrance is expected to maintain its power

throughout the test even when the difficulties of items and persons are close, a condition
which causes residual-based person-fit statistical checks to lose power;

3. The response time model proposed separates the time intensity of an item from the
speed of the test taker. It would be very difficult if not impossible for a test taker with pre-
knowledge or memorization intent to time responses to match the time intensity (item)
parameter and the speed (person) parameter for all items administered.

The response time model to be used for this analysis is as follows.

f(ts T, a0 B;) = tij‘f/iz_nexp {—%[ai (lntij - (Bi— Tj))]z},

where T; is the speed at which test taker j takes the test, f3; is the time intensity of item i, and a; is a
discrimination parameter for item i. van der Linden (2006) describes estimation procedures for
these parameters.

CTB will estimate the response time parameters, and then identify aberrant response time patterns.
Each log response time will be standardized using a predicted mean and standard deviation given
the response times on all other items by the same test taker. A response time to an item will be
flagged as aberrant when its standardized residual is more than 1.96 or less than -1.96. Rates of
flagging outside of the significance level of the test, along with patterns of aberrances found, will be
examined and reported.

In future years, the Smarter Balanced Assessment Consortium may want to consider the use of
ANOVA and CUSUM (Egberink, Meijer, Veldkamp, Schakel, & Smid 2010; Van Krimpen-Stoop, &
Meijer, 2001) analyses on item response times to detect possibly compromised items from
administration to administration.

The following caveats are always applicable:

1. Explanations for aberrant response time patterns exist other than cheating. For example,
poor time management, testing interruption.

2. The flagging criterion should only be taken as a signal for policymakers to collect
additional evidence about what occurred in the classroom.
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