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Executive Summary 
Automated Scoring studies conducted as part of the Smarter Balanced Field Test continued and 
extended the research carried out during the Pilot Study. The Field Test included 683 English 
language arts (ELA)/literacy short-text, constructed-response, items, 238 mathematics short-text, 
constructed-response, items, and 66 ELA/literacy essay items. Included with the mathematics items 
were 41 items developed to test mathematical reasoning. At least one Automated Scoring system 
was trained for every item. For each item type, four different systems were trained on a subset of 21 
items to facilitate evaluation of Automated Scoring systems. 

Besides evaluating the performance of Automated Scoring on the Field Test items, four additional 
research studies focused on two themes: hybrid scoring approaches and extending what can be 
scored. These themes were selected based on two criteria: the studies could be completed in time 
for the implementation of 2015–2016 assessment programs, and the results are likely to be directly 
relevant to assessment programs considering inclusion of Automated Scoring. 

Automated Scoring Evaluation 

The performance of all Automated Scoring systems was evaluated relative to the final human scores 
using six criteria, based quadratic weighted kappa (QWK), correlation, perfect agreement rates, and 
standardized mean difference (SMD). This framework, similar to the framework used in the Pilot 
Study, is described in more detail in Chapter 3.  

Automated Scoring systems were flagged if their scores did not meet performance criteria. The top-
performing Automated Scoring system was selected for each item (for each item/trait combination in 
the case of essay items) based on the number of flags, with ties decided on QWK. The suitability for 
Automated Scoring for each item was evaluated based on the performance of the top-performing 
system. The Automated Scoring results for the Field Test items are summarized below. Because the 
level of human-human inter-rater agreement may influence the performance of Automated Scoring 
systems, we also summarize human rater performance. 

ELA/literacy items  

Out of 665 ELA/literacy short-text, constructed-response, items, human-human inter-rater agreement 
meets all criteria for 268 items (40%), requires review for absolute performance for 6 items (1%), 
requires review for subgroup performance for 55 items (8%), and does not meet performance criteria 
for 336 items (51%). 

Based on the top-performing Automated Scoring system, 261 items (39%) meet all criteria for 
Automated Scoring, 47 items (7%) require review for absolute performance, 4 items (1%) require 
review for performance relative to inter-rater agreement, 183 items (28%) percent require review for 
subgroup performance, and 170 items (26%) are not suited for Automated Scoring. 

Mathematical Reasoning 

Out of 41 mathematics short-text, constructed-response, items developed to test mathematical 
reasoning, human-human inter-rater agreement meets all criteria for 29 items (71%), requires review 
for subgroup performance for 5 items (12%), and does not meet performance criteria for 7 items 
(17%). 
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Based on the top-performing Automated Scoring system, 22 items (54%) meet all criteria, 2 items 
(5%) require review for absolute performance, 2 items (5%) require review for relative performance, 
4 items (10%) require review for subgroup performance, and 11 items (27%) are not suited for 
Automated Scoring. 

Remaining Mathematics items 

Out of the remaining 192 mathematics items, human-human inter-rater agreement meets all criteria 
for 164 items (85%), requires review for absolute performance for 1 item (1%), requires review for 
subgroup performance for 10 items (5%), and does not meet performance criteria for 17 items (9%). 

Based on the top-performing Automated Scoring system, 139 items (74%) meet all criteria, 3 items 
(2%) require review for absolute performance, 9 items require review for performance relative to 
inter-rater agreement, 12 items (6%) require review for subgroup performance, 24 items (25%) are 
not suited for Automated Scoring due to absolute performance and 4 items (2%) are not suited due 
to relative performance. 

ELA essay items 

Essay responses were scored on three traits: Organization/Purpose, Evidence/Elaboration, and 
Conventions. Out of 66 essay items,  

• For the Organization/Purpose trait, human-human inter-rater agreement meets all 
criteria for 60 items (91%), requires review for subgroup performance for 4 items (6%), 
and does not meet performance criteria for 2 items (3%). 

• For the Evidence/Elaboration trait, human-human inter-rater agreement meets all criteria 
for 59 items (89%), requires review for subgroup performance for 4 items (6%), and did 
not meet performance criteria for 3 items (5%). 

• For the Conventions trait, human-human inter-rater agreement meets all criteria for 26 
items (39%), requires review for absolute performance for 2 items (3%), requires review 
for subgroup performance for 2 items (3%), and does not meet performance criteria for 
36 items (55%). 

Based on the top-performing Automated Scoring system, 

• For the Organization/Purpose trait, 44 items (67%) meet all criteria for Automated 
Scoring, 13 items (20%) require review for performance relative to inter-rater agreement, 
6 items (9%) require review for subgroup performance, and 3 items (5%) are not suited 
for Automated Scoring. 

• For the Evidence/Elaboration trait, 45 items (68%) meet all criteria for Automated 
Scoring, 12 items (18%) require review for performance relative to inter-rater agreement, 
5 items (8%) require review for subgroup performance, 2 items (3%) are not suited for 
Automated Scoring due to absolute performance, and 2 items (3%) due to relative 
performance. 

• For the Conventions trait, 41 items (62%) meet all criteria for Automated Scoring, 5 items 
(8%) require review for performance relative to inter-rater agreement, 8 items (12%) 
require review for subgroup performance, 8 items (12%) are not suited for Automated 
Scoring due to absolute performance, and 4 items (6%) due to relative performance. 
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Hybrid Scoring Approaches 

Hybrid scoring approaches combine human handscoring with Automated Scoring. The first study, 
Continued Read-Behind Scenarios, considered combinations of Automated Scoring and handscoring 
at the score level. This included using Automated Scoring systems as a read-behind for a human 
rater. The second study, Targeting Responses for Human Review, considered combining Automated 
Scoring and handscoring at the response level. Specifically, it studied statistical methods and 
techniques that can be used to select responses for human review. 

Continued Read-Behind Studies 

High-stakes assessment programs typically use more than one human rater to score constructed-
response items to reduce rater effects. There has been increasing interest in alternative scoring 
scenarios which combine human and Automated Scoring. Eight of these hybrid scoring scenarios 
were investigated during the Pilot Study. One finding was that using the best-performing Automated 
Scoring system as a second rater (“read-behind”) with a single human rater resulted in a high score 
quality. 

A major methodological limitation of the Pilot Study, however, was that scores by an independent 
human rater were not available because collecting these data was organizationally challenging. 
Instead, the first human rater was used as a human score in the alternative scoring scenarios. This 
may have inflated the score quality of some scoring scenarios, in particular, the human-Automated 
Scoring read-behind. 

During the Field Test, independent human ratings were collected to further investigate and extend 
the findings of the Pilot Study research. Based on these new data, the Field Test study confirmed: 

• Scoring scenarios where an Automated Scoring system serves as a second rater (“read-
behind”) behind a human rater produce high quality scores.  

Targeting Responses for Human Review 

Automated Scoring systems are designed to predict the score that a human rater would assign to a 
given response based on the associated rubric. Although rater agreement statistics used to evaluate 
Automated Scoring systems generally show scoring consistency, it is a well-known fact that 
Automated Scoring provides at times a score that is different from human scores. 

In a high-stakes scoring scenario, very little to no score deviation between Automated Scoring and 
human scoring is acceptable. Hence, it is very important to identify responses where Automated 
Scoring tends to deviate from human scores. This may depend on several factors, including the 
features used by the Automated Scoring system, the number of observations per score point, and 
prediction and classification models that were trained.  

In order to identify responses that may need human review, Chapter 5 investigated cross-validation 
based methods on principal components and number of clusters to identify the responses that lie in 
the sparse regions of the multi-dimensional feature space. The study concludes:  

• Performance measures based on exact agreement, adjacent agreement, discrepant 
agreement, and quadratic weighted kappa shows that the developed procedure has 
major improvements over the random selection of responses that were sent out for 
human review. 
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Extending What Can Be Scored 

The third study, Item Characteristics that Correlate with Agreement for Handscoring and Automated 
Scoring, extended similar research done in the Pilot Study to the Field Test items. It investigated 
which characteristics of items (e.g., Rubric Type, Claim, etc.) are related to score accuracy of human 
raters as well as Automated Scoring systems. The fourth study, Generic Scoring Models, investigated 
the feasibility of training an Automated Scoring system to score one trait (Conventions) across 
several essay prompts, rather than training a scoring model for individual prompts.  

Item Characteristics that Correlate with Agreement for Handscoring and Automated Scoring 

From experience, about one-third to one-half of short-text items developed for an assessment 
program cannot be scored reliably by Automated Scoring systems. This drop-out rate increases the 
cost of item development for an assessment program using Automated Scoring. Chapter 6 
investigated whether any of the item characteristic of the Field Test items could be used to predict 
whether a short-text, constructed-response, item can be scored by an Automated Scoring system. 
The item characteristics were based on item metadata, the items themselves, and characteristics of 
the item scoring rubrics. Findings include: 

• There was a statistically significant decrease in performance of both Automated Scoring 
and handscoring when the rubrics of ELA/literacy items were generic as opposed to item-
specific rubric.  

• Further analyses are needed to understand the effect of Writing Purpose on Reading 
Comprehension and Brief Writes. For Reading Comprehension, there was higher 
agreement when the text was fictional for Automated Scoring—and handscoring showed 
a similar trend. With Brief Writes, there was significantly higher agreement for narrative 
stimuli for both Automated Scoring and handscoring. 

Generic Scoring Models 

Chapter 7 investigated the development of generic scoring model to score the Conventions trait for 
Smarter Balanced essays. Scores for this trait are based on writing conventions as opposed to the 
content of the essay. Thus, we hypothesized that we can develop a single generic scoring model for 
each grade level as opposed to item-specific models.  

We developed a spelling error feature and five new features based on a grammar-checker: 
grammar/usage errors, white space errors, capitalization errors, punctuation errors, and stylistic 
suggestions. These features were added to Vendor 1’s feature set. For grades 6 and 11, we trained a 
generic scoring model on all combinations of five essays and tested on three held-out essays. Based 
on average quadratic weighed kappa, we conclude: 

• It is very likely that a generic scoring model can outperform prompt-specific scoring 
models for the Conventions trait, given a specific grade. 

A probable explanation for this effect is that when combining the training sets in generic scoring, the 
training model observes many more possible types of grammatical and convention-related errors per 
given score point than it can find in a single item. Hence, the parameters of the scoring models are 
computed based on a better knowledge of the errors it may encounter when being tested.  



Chapter 1: 
Automated Research Overview 

 
 

5 
Copyright © 2014 by Smarter Balanced Assessment Consortium 

Chapter 1: Automated Research Overview 
The research studies related to Automated Scoring that were conducted as part of the Smarter 
Balanced Field Test continue and extend the research that was conducted during the Pilot Study. The 
current chapter describes the various item types as they are defined in the data files delivered from 
the American Institutes for Research (AIR). The Smarter Balanced Assessment Consortium Field Test 
administration data originates from two main sources: an item metadata file that describes the 
Content Domain, Claim, Target, and Standards an item measures together with other item attributes 
(e.g., Depth of Knowledge [DOK]), and a student response data file that includes student response 
information as well as a subset of item metadata information. In addition to describing items, this 
chapter also describes how items were selected for Automated Scoring studies.  

Chapter 2 summarizes the results of the research conducted during the Pilot Study for the readers’ 
convenience. A detailed report on the Pilot research studies is available online (see 
www.smarterbalanced.org).  

Chapter 3 describes the criteria used to evaluate the functioning of the Automated Scoring of items. 
These criteria follow the framework used for evaluation in the Pilot Study, but include some 
refinements to the reporting. The performance of the various Automated Scoring systems on the 
Field Test items is described. This chapter also provides brief descriptions of the Automated Scoring 
systems that were a component of the Field Test. Vendors reflect on the lessons learned from 
participating in the Pilot Study and Field Test and describe various enhancements made to the 
Automated Scoring systems as a result of the Smarter Balanced studies. 

Chapters 4–7 report on the research studies that were conducted to enhance Smarter Balanced’s 
efficacy in its use of Automated Scoring. Online appendices present additional details related to 
these studies. 

Item Descriptions 

The Field Test Automated Scoring research conducted on behalf of the Smarter Balanced 
Assessment Consortium focused on short-text, constructed-response, items (English language arts 
[ELA]/literacy and mathematics) and essay items. During the Pilot Study, the AIR equation engine 
was validated. Based on the reported results, Smarter Balanced chose not to include equation items 
in the Field Test Research Studies. 

Item metadata were available for 19,619 Field Test items (9,366 ELA/literacy items and 10,253 
mathematics items) in the test delivery system. Of these items, 1,869 items required handscoring by 
McGraw-Hill Education CTB (CTB) and our scoring subcontractors, either to produce the score of 
record or to prepare Automated Scoring system training and validation sets.  

• 51 items were marked do not score (DNS) by Smarter Balanced for various reasons. 

• 79 ELA/literacy short-text, constructed-response, items were only included to facilitate 
comparison with NAEP and/or PISA and were not considered part of the Smarter 
Balanced item pool.  

• 302 mathematics items have been identified as being dependent, in the sense that 
accurate scoring depends on the student’s response to another item, usually as part of a 
performance task. While handscoring can accommodate such dependent items, many 
Automated Scoring systems currently are not capable of scoring such dependent items. 

http://www.smarterbalanced.org/


Chapter 1: 
Automated Research Overview 

 
 

6 
Copyright © 2014 by Smarter Balanced Assessment Consortium 

Therefore, these mathematics dependent items were handscored only and not included 
in the Automated Scoring studies.  

Overall, 1,437 items were potential candidates for Automated Scoring studies. Table 1.1 shows the 
constructed-response item types as identified in metadata files, a description of the item type, the 
number of items coded with the item type by content area, and the available Automated Scoring 
system developers for each item type. As noted in the table, some of these developers participated 
in the Automated Student Assessment Prize (ASAP) competition. One ASAP scoring system (ASAP 3) 
declined the invitation to participate in the Field Test studies due to scheduling conflicts. Another 
ASAP scoring system (ASAP 4) required considerable resources to train and validate scoring models 
during the Pilot Study and was not included in the Field Test study due to scalability concerns.  

Table 1.1. Description of Field Test Constructed-Response Item Types and Scoring Systems  

Response Type Description 
Number of 

ELA/literacy 
Field Test Items 

Number of MA 
Field Test Items Available Scoring Systems* 

Short-text Short 
constructed-
responses, 
text only.  

907 362 Measurement Incorporated-
Project Essay Grade (MI-PEG) 
TurnItIn/LightSide Labs 
Luis Tandalla (ASAP 1) 
Jure Zbontar (ASAP 2) 
Pawel Jankiewicz (ASAP 5) 

Essay Extended 
constructed-
responses, 
text only. 

168 0 AIR-Open Source Engine 
Measurement Incorporated-
Project Essay Grade (MI-PEG) 
CTB 
TurnItIn/LightSide Labs 
Luis Tandalla (ASAP 1) 
Jure Zbontar (ASAP 2) 
Pawel Jankiewicz (ASAP 5) 

Note: ASAP refers to the Automated Student Assessment Prize, a competition hosted by the William and Flora 
Hewlett Foundation. The number refers to the place awarded in the second phase of the public competition to 
this developer. 
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Response Sampling and Routing 

Based on the results from a research study conducted as part of the Pilot Study, 1,000 on-grade 
responses is a reasonable minimum for a training set for short-text, constructed-response, items; 
1,500 on-grade responses is a minimum for essay items. Moreover, 500 responses is a reasonable 
size for a validation set. Therefore, 1,500 and 2,000 responses are required for the Automated 
Scoring systems for the short-text and essay items, respectively.  

During the Field Test, many items were either over-exposed or under-exposed to the student 
population. As a result, items differed greatly in the number of available on-grade responses. If the 
responses in the Standard Setting and Census Sample could have been combined, the following 
number of items would have met the minimum requirements (that is, 1,500 or 2,000 responses): 

• 771 out of 907 ELA/literacy short-text, constructed-response, items,  

• 238 out of 345 mathematics short-text, constructed-response, items, and 

• 81 out of 168 ELA/literacy essay items.  

Unfortunately, combined handscoring of Standard Setting and Census Sample responses turned out 
to be operationally infeasible. Therefore, all items that met the minimum requirements either in the 
Standard Setting Sample or in the Census Sample (or both) were selected. This resulted in selection 
for Automated Scoring studies for the following number of items (percentage of maximum possible 
number in parentheses): 

• 665 out of 771 ELA/literacy short-text, constructed-response, items (86%),  

• 238 out of 345 mathematics short-text, constructed-response, items (69%), and 

• 66 out of 81 ELA/literacy essay items (81%). 

Overall, the Field Test items requiring handscoring were divided into three cases, as follows: 

1. Case 1. Handscoring only. These items were not eligible for Automated Scoring studies 
and were handscored only. Ten percent of the responses were scored with a second read 
for inter-rater reliability purposes. Items included were: 

a. Any grade-level short-text, constructed-response, items with fewer than 1,500 on-
grade responses (except mathematics reasoning items, see Case 3). 

b. Any grade-level essay items with fewer than 2,000 on-grade responses.  

c. Any mathematics short-text, constructed-response, items identified as dependent 
on another item. 

2. Case 2. Automated Scoring training and validation. CTB selected a random sample of 
1,500 responses (short-text, constructed-response, items) or 2,000 responses (essay 
items) of the available on-grade responses per item. Of these, a random sample of 500 
responses were designated as validation responses while the remaining responses were 
designated as training responses. The training and validation responses received two 
human reads and adjudication of any non-exact scores by a senior human rater. The 
score of record was the senior rater for adjudicated responses or the matched score 
when the two human scores agreed. Scores of record were compared against engine 
scores for validation purposes. Items included were: 
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a. Short-text, constructed-response, items with at least 1,500 on-grade responses.  

b. Essay responses with at least 2,000 on-grade responses. 

3. Case 3. Mathematics reasoning items. Forty-one mathematics short-text, constructed-
response, items were identified as mathematics reasoning items. A random sample of up 
to 2,000 responses received two human reads and adjudication of any non-exact scores 
by a senior human rater. Note that some of the items have fewer than 1,500 on-grade 
responses, but were nonetheless included in Automated Scoring studies as part of the 
mathematics reasoning items. 

Selection of Responses 

The number of on-grade responses for each item varied considerably. To select the scoring samples 
required for Case 2 and Case 3 items, random samples were drawn from the response data from the 
available on-grade responses in either the Standard Setting Sample or the Census Sample. Note that 
both the Standard Setting Sample and the Census Sample are representative of the student 
population as a whole by design. 

Selection of Items for Each Automated Scoring System 

Finally, the items were distributed to the Automated Scoring systems, as follows. 

• Case 1. Handscoring only. These items were not routed to any Automated Scoring 
system. 

• Case 2. Automated Scoring training and validation.  

– All short-text, constructed-response, items were routed to MI-PEG. In addition: 

 A subset of 21 ELA/literacy short-text, constructed-response, items were 
also sent to the ASAP 1, ASAP 2, and ASAP 5 systems.  

 A subset of 21 mathematics short-text, constructed-response, items were 
also sent to the ASAP 1, ASAP 2, and ASAP 5 systems.  

– All essay items were routed to the AIR-OSE, CTB, and MI-PEG engines. In addition, 
a subset of 21 selected essay items were routed to TurnItIn/LightSide Labs. 
Seven items were selected from each of the grade bands 3-5, 6-8, and 9-11. 

• Case 3. Mathematics reasoning items. All mathematics reasoning items were routed to  
MI-PEG and TurnItIn/LightSide Labs. 

These items were selected to be representative as best as possible within Smarter Balanced 
preferences and the operational constraints. Short-text, constructed-response, items with a sufficient 
number of responses available (1,500–2,000) were scored by MI-PEG. Similarly, ELA/literacy essay 
items with a sufficient number of responses available (2,000) were scored by AIR-OSE, CTB, and  
MI-PEG.  
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Table 1.2. Automated Scoring Systems and Item Counts by Score Type 

Content Score Type AIR- 
OSE CTB LIGHT 

SIDE 
MI- 
PEG ASAP 1 ASAP 2 ASAP 5 

ELA/literacy 
ST    683 21 21 21 

Essay 67 67 21 67    

Mathematics 
ST    238 21 21 21 

MR   41 41    

Note: ST = Short-text, constructed-response, item. MR = Mathematical reasoning. Due to delays in delivery of 
results and timeline constraints, scores from the AIR-OSE system could not be included in this report. 

Overview of the Field Test Research Studies 

During the Smarter Balanced Pilot Study, several research studies were conducted related to 
Automated Scoring. These studies addressed the following topics: 

• Performance of Automated Scoring systems 

• Training, validating, and deploying Automated Scoring systems 

• Developing items for Automated Scoring 

• Operational scoring 

The results of these studies are summarized in Chapter 2. This section provides an overview of the 
research studies conducted during the Field Test. These studies continue and extend the research 
started in the Pilot Study. Table 1.3 provides an overview with a short description. Chapters 4–7 
contain more detailed reports on the research studies. 

Two factors were considered important in the decision to conduct these studies: (1) the results of 
these studies are likely to be directly relevant to assessment programs considering inclusion of 
Automated Scoring and (2) the studies can be completed in time for the implementation of the 
2015–2016 assessment programs. 

The Field Test research studies address three topics: 

• Performance of Automated Scoring systems 

• Hybrid scoring approaches 

• Extending what can be scored 

The performance of several Automated Scoring systems on the Field Test items were evaluated, 
similarly to what was done with the Pilot Study items. An overview of the vendors scoring each item 
type is given in Table 1.2. The Pilot Study evaluation framework was used in the Field Test (see Table 
3.1), but with some additional refinements in the reporting, as described in Chapter 3. 
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Two studies (Chapters 4 and 5) focused on hybrid scoring approaches, which combine Automated 
Scoring and handscoring and two studies (Chapters 6 and 7) focused on extending what can be 
scored. 

The first study, Continued Read-Behind Scenarios, considered combinations of Automated Scoring 
and handscoring at the score level. This includes using Automated Scoring systems as a read-behind 
for a human rater. The results of this study are relevant for assessment programs considering 
implementing Automated Scoring in various stages. 

The second study, Targeting Responses for Human Review, considered combining Automated 
Scoring and handscoring at the response level. Specifically, it studied statistical methods and 
techniques that can be used to select responses for human review. Several techniques to detect 
potential outlier responses were studied during the Pilot Study. The Field Test study extended this 
research and also investigated the impact on score quality. The results of this study can inform 
operational decision making, for example, when the percentage of responses reviewed needs to be 
considered in light of scoring costs. 

The third study, Item Characteristics that Correlate with Agreement for Handscoring and Automated 
Scoring, extended a similar study done in the Pilot Study to the Field Test items. It investigates which 
characteristics (e.g., Rubric Type, Claim, etc.) of items are related to score accuracy of human raters 
as well as Automated Scoring systems. The results of this study are relevant for item development in 
the future. 

The fourth study, Generic Scoring Models, investigated the feasibility of training an Automated 
Scoring system to score one trait (Conventions) across several essay prompts, rather than training a 
scoring model for individual prompts. If generic scoring models can achieve satisfactory score 
quality, then it may be possible to reduce costs associated with Automated Scoring by using such 
models. 

Table 1.3. Overview of the Field Test Research Studies 

Category Study  Chapter Short Description 

Automated 
Scoring 
evaluation 

Automated Scoring evaluation 3 Evaluation of performance of 
Automated Scoring systems for the 
Field Test items 

Hybrid scoring 
approaches 

Continued read-behind scenarios 4 Score quality of scoring scenarios 
which combine human and Automated 
Scoring 

Targeting responses for human review 5 Methods to route responses for human 
review during Automated Scoring 

Extending 
what can be 
scored 

Item characteristics that correlate with 
agreement for handscoring and 
Automated Scoring 

6 Investigating characteristics of items 
that can be scored accurately by 
Automated Scoring systems 

Generic scoring models 7 Development of Automated Scoring 
system to score Conventions trait 
across multiple essay prompts 
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Chapter 2: Summary of the Pilot Study Research Studies 
The research conducted during the Pilot Study on behalf of the Smarter Balanced Assessment 
Consortium focused on the Automated Scoring of equation, short-text (both English language arts 
(ELA)/literacy and mathematics), and essay items. Out of a total of 5,412 Pilot Study items, 1,494 
items were constructed-response items eligible for Automated Scoring. These items were 
handscored by two human raters; in case of disagreement the score was resolved by a third (senior) 
rater. Using the resolved human scores, nine vendors trained Automated Scoring systems to score (a 
subset of) the Pilot Study items. A wide range of Automated Scoring approaches were employed. Six 
special studies were conducted to investigate various aspects of Automated Scoring. 

This chapter summarizes the main findings of the Pilot Study Research Studies to provide context for 
the studies conducted during the Field Test. For additional details on the methodology and the 
results of each study, the reader is referred to the full Smarter Balanced Pilot Automated Scoring 
Research Studies research report. 

Performance of Automated Scoring Systems 

A question central to the Pilot Study was: How well can Automated Scoring systems score the 
constructed-response items compared to the gold standard of the resolved human scores? Several 
criteria (see Table 3.1) were used to evaluate reliability and validity of scores assigned by Automated 
Scoring systems, including common agreement statistics such as exact agreement rates, quadratic 
weighted kappa, and standardized mean differences. The results can be summarized as follows: 

• Out of a total of 348 equation items, 302 items (87%) met all criteria for Automated 
Scoring, 30 items (9%) needed additional review, and 16 items (5%) were not suited for 
Automated Scoring. 

• Out of a total of 396 short-text items, 192 items (48%) met all criteria for Automated 
Scoring, 187 items (47%) needed additional review, and 17 items (4%) were not suited 
for Automated Scoring. 

• Out of a total of 51 essay items/traits (three traits for each of 17 essays), 21 items/traits 
(41%) met all criteria for Automated Scoring while 30 items/traits (59%) needed 
additional review. 

In previously reported research (e.g., the 2012 ASAP 2 competition; Shermis, 2013) on Automated 
Scoring of short-text items, the agreement between two human raters tended to be greater than the 
agreement between Automated Scoring systems and human raters. In the Pilot Study, the 
performance of Automated Scoring systems exceeded human inter-rater agreement for many short-
text items. This may be an indication that Automated Scoring technology is improving.  

To further the state-of-the-art in Automated Scoring, in particular in the context of large-scale 
operational assessments, several special studies were conducted, organized around three themes: 
(a) training, validating, and deploying Automated Scoring systems, (b) developing items for 
Automated Scoring, and (c) operational scoring using Automated Scoring systems. All nine vendors 
were invited to participate and all but two participated in at least one special study. 
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Train, Validate, and Deploy Automated Scoring Systems 

Automated Scoring systems commonly require a set of handscored responses (training set) to 
develop a scoring model. A second, separate set of handscored responses (validation set) is usually 
required to evaluate the performance of the system. Given the cost of handscoring, a special study 
considered the size of training and validation sets in relation to scoring accuracy. Key findings were: 

• About 500 responses was a reasonable lower limit required to train Automated Scoring 
systems for the Pilot Study items; 750 to 850 responses were necessary to achieve 
performance within one standard error of the performance achieved with 1,500 
responses in the training set. Performance for essay items continued to improve from 
1,000 to 1,500 responses in a training set, but short-text items did not require training 
sets with more than 1,000 responses. 

• Uncertainty in quadratic weighted kappa estimates reduced by approximately 50% when 
the validation set size increased from 100 to 300 responses and by approximately 75% 
with 500 responses; validation sets with more than 500 responses may not have been 
efficient. 

After training and validation, a large-scale assessment program can deploy Automated Scoring 
systems in several scenarios, for example, fully automated operational scoring or a combination of 
Automated Scoring and human scoring. A special study investigated various scoring scenarios. The 
main conclusions were: 

• Score quality was highest when one human rater was paired with the best-performing 
Automated Scoring system with a third (human) rater adjudicating all disagreements. 
This produced substantially better quadratic weighted kappa than other studied 
scenarios. Note however that results may have been influenced by the fact that the first 
human rater contributed to the baseline score of record.  

• Using a second Automated Scoring system to read-behind another Automated Scoring 
system did not produce agreement rates as high as the combination of a human and an 
Automated Scoring system. This may be due to the fact that the Automated Scoring 
systems were independently trained and therefore there may be converging. It may be 
worthwhile to investigate training two Automated Scoring systems specifically for a read-
behind scenario. 

Developing Items for Automated Scoring 

From experience, about one-third to one-half of short-text items developed for an assessment 
program cannot be scored reliably by Automated Scoring systems. This drop-out rate increases the 
cost of item development for an assessment program using Automated Scoring. A special study 
investigated whether item characteristics can predict whether a short-text item can be scored 
automatically. The item characteristics were based on item metadata, item stimulus material, and 
scoring rubrics. Two of the results of this study were: 

• There was a statistically significant decrease in performance of Automated Scoring 
systems for ELA/literacy items when there were many possible text-based key elements 
(four or more) or when Depth of Knowledge was high (Level 3). Performance was lower 
for difficult items, but this was not statistically significant. 
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• The statistical significance of the relationship between item characteristics and 
Automated Scoring performance could not be tested for mathematics items. However, 
the trends for the mathematics items were similar to the trends the for ELA/literacy 
items. 

Operational Scoring 

Various issues may impact the quality of scores produced by an Automated Scoring system during 
operational scoring. Responses may require human review, for example, when a response is unlike 
the responses used in training to the extent that this affects scoring accuracy. Chapter 6 investigated 
whether responses likely to require human scoring can be identified automatically. Three aspects 
were investigated: 

• Outlier detection methods indicated that discrepancies between human and automated 
scores tended to occur for responses with atypical feature patterns. 

• Three different methods (Logistic Regression, Support Vector Machines, and Random 
Forests) had little success in detecting which responses would receive a discrepant score 
by an Automated Scoring system. 

• There is a weak relationship between discrepant scores and disagreement between 
different prediction models for essay items, but not for short-text responses. 

Gaming can be defined as the deliberate addition, by an examinee, of construct-irrelevant features 
to a response in an attempt to increase a score. Similarly, examinees may plagiarize source 
documents included in the stimulus material of essay items. In either case, score validity may be 
compromised during operational scoring. Chapter 7 studied the susceptibility of Automated Scoring 
systems to several forms of gaming. Three results are noteworthy: 

• Optimal gaming strategies (relative to all strategies considered) increased the score of 
low-scoring responses by almost 0.50 score points; on average, gaming increased the 
score by about 0.25 points. 

• Gaming lowered the score of high-scoring responses, indicating that gaming strategies 
may be detrimental. 

• Automated Scoring systems are still susceptible to gaming, but one Automated Scoring 
system was not affected by the gaming strategy that appends extra copies of the 
response. This demonstrates that Automated Scoring systems can be made resilient to 
gaming.  

A special study investigated whether latent semantic analysis can be used to detect various 
instances of source-based plagiarism. A corpus of 95 student essays, 60 percent of which were 
plagiarized from Wikipedia to various degrees was used (Clough & Stevenson, 2011).The 
performance of the algorithm on a small set of test documents can be summarized as follows: 

• Plagiarized documents were marked as most suspicious using document similarity when 
compared to the sources. Detection rates on the study corpus were high with few false 
positives. 

Latent semantic analysis did not offer an advantage over basic document similarity in this study. This 
may be due to the fact that the plagiarism in the corpus was relatively easy to detect. Although a 
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detection system was relatively successful at identifying the instances of plagiarism in the study 
corpus, plagiarism is a complex issue that requires further research. For additional details, see the 
Smarter Balanced Pilot Automated Scoring Research Studies research report. 
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Chapter 3: Automated Scoring Evaluation 
Williamson, Xi, and Breyer (2012) describe a framework based upon multiple statistics (referred 
hereafter as the Educational Testing Services [ETS] framework) that are used in combination to 
evaluate the quality of the scores assigned by an Automated Scoring system (also referred as 
automated scores or engine scores) in comparison to the human rater quality for each item. Engine 
scores are evaluated and compared to human scores on the item level in order to diagnose whether 
suboptimal results are due to (a) an engine’s inability to reliably score student responses for a 
particular item or (b) attributes of an item’s design that impede reliable scoring by humans (Higgins, 
2013). Included in the ETS framework is the standardized mean difference (SMD) between the 
human scores and engine scores at both the population and subpopulation level. See Appendix 3.D 
for a brief description of these rater agreement statistics. 

In 2011 CTB adopted the ETS framework, with two minor adjustments (see Table 3.1): 

• Bridgeman (2013) noted that high agreement between two raters can occur when raters 
are truncating the rubric score range. CTB has found that an engine’s quadratic weighted 
kappa (QWK) may be high even though the engine exact agreement rate in comparison 
to humans is low. In this situation, engines are usually giving adjacent scores to humans 
so that both the percent agreement and kappa statistics are not comparable to humans. 
For this reason, CTB also monitors engine performance for a notable reduction (greater 
than 0.05 difference) in perfect agreement rates between the human-human and engine-
human scores.  

• Williamson, Xi, and Breyer (2012) flag the SMD if the difference between automated 
scores and human scores is greater than 0.15 in absolute value. Similarly, they flag the 
SMD for a subgroup if the difference between automated scores and human scores for 
that subgroup is greater than 0.10 in absolute value. Because the larger the population 
SMD value the more likely the subpopulation SMD value will be flagged, CTB reduced the 
amount of SMD separation tolerated by flagging the population SMD if it exceeds 0.12 in 
absolute value. 

The framework with the adjustments was used to evaluate the performance of Automated Scoring in 
the Smarter Balanced Pilot Study. The ETS framework is described in depth by Williamson, Xi, and 
Breyer (2012), Ramineni and Williamson (2013), and Higgins (2013), as well as in the Pilot 
Automated Scoring Research Studies report. Interested readers should refer to these publications 
and manuscripts for background on the framework. 

Data Sources 

The results of Automated Scoring were evaluated for all items that received full engine training and 
validation processes as set forth in Table 1.2. For a sample of 21 English language arts 
(ELA)/literacy short-text, constructed-response items and 21 mathematics short-text, constructed-
response items, four Automated Scoring systems were trained. For 41 mathematics short-text, 
constructed response items related to mathematical reasoning, two Automated Scoring systems 
were trained. For the remaining items, one Automated Scoring system was trained. For the 
ELA/literacy essay items, one of the Automated Scoring systems did participate in the training but 
did not deliver scores for the validation sets by the end of the scoring period. Thus, this Automated 
Scoring system is not included in the evaluation. For a sample of 21 ELA/literacy essay items, three 
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Automated Scoring systems were trained. For the remaining items, two Automated Scoring systems 
were trained. 

The engine-human SMD value was calculated on the total validation sample and for each subgroup 
of 100 students or more. For many subgroups, however, insufficient numbers of students were 
available in the validation sample to calculate the SMD. Outside the scope of the studies presented 
in this report, given the data sources available and our proposal response, was the relationship of 
Automated Scores to external measures and to indices based on students reported test scores. 

Table 3.1. Statistical Criteria for the Evaluation of Automated Scoring Systems 

Flagging Criterion  Flagging Threshold 

Quadratic weighted kappa for engine score and 
human score  

Quadratic weighted kappa less than 0.70  

Pearson correlation between engine score and human 
score  

Correlation less than 0.70  

Standardized difference between engine score and 
human score  

Standardized difference greater than 0.12 in absolute 
value  

Degradation in quadratic weighted kappa or 
correlation from human-human to engine-human  

Decline in quadratic weighted kappa or correlation 
equal to or greater than 0.10  

Standardized difference between engine score and 
human score for a subgroup 

Standardized difference greater than 0.10 in absolute 
value  

Notable reduction in perfect agreement rates from 
human-human to engine-human  

Decline equal to or greater than 0.05  

Reporting Refinements for the Field Test 

Chapter 2 of the Pilot Automated Scoring Research Studies report presents a detailed report on the 
performance of the Automated Scoring systems for the different item types. Items were broadly 
classified into three categories (Meets all criteria for Automated Scoring; Needs additional review; 
Not suited for Automated Scoring) based on the number of flags for the best-performing Automated 
Scoring system (0 flags, 1–7 flags, 8 or more flags, respectively). The results can be summarized as 
follows: 

• Out of a total of 348 equation items, 302 items (87%) met all criteria for Automated 
Scoring, 30 items (9%) needed additional review, and 16 items (5%) were not suited for 
Automated Scoring. 

• Out of a total of 396 short-text items, 192 items (48%) met all criteria for Automated 
Scoring, 187 items (47%) needed additional review, and 17 items (4%) were not suited 
for Automated Scoring. 
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• Out of a total of 51 essay items/traits (three traits for each of 17 essays), 21 items/traits 
(41%) met all criteria for Automated Scoring while 30 items/traits (59%) needed 
additional review. 

A relatively large percentage of short-text and essay items (47% and 59%, respectively) were 
categorized as needing additional review. Although the Smarter Balanced Automated Scoring 
Research Studies report provides a detailed analysis of these items, additional information on the 
summary level would be desirable. To this end, we implemented a refinement in the reporting of the 
results, while keeping the statistical criteria in the framework the same. 

The statistical criteria in Table 3.1 can be divided into three broad categories: evaluated against the 
final human scores of record, evaluated against the inter-rater performance of the two initial human 
raters, and evaluated for the performance in different subgroups. Table 3.2 categorizes the criteria 
from Table 3.1 into these three classes: 

• Criteria in the first category evaluate the performance of an Automated Scoring system 
by comparing the scores assigned by the Automated Scoring system against the final 
human scores of record (referred as engine-human performance)  

• Criteria in the second category evaluate the performance of an Automated Scoring 
system by comparing engine-human performance against the inter-rater performance of 
two initial human raters. 

• Finally, criteria in the third category evaluate performance of an Automated Scoring 
system using engine-human performance (that is, statistics from the first category) for 
different subgroups. The number of responses in a validation set may not be sufficient to 
evaluate subgroup performance. 

Note the difference between the evaluation criteria in the first and second category. For the first 
category, the scores assigned by the Automated Scoring system are compared against the final 
human scores of record. For the second category, statistics from the first category are compared 
against performance of the two human raters (inter-rater agreement). In other words, evaluation of 
the criteria of the second category should be subsequent to evaluation of the criteria in the first 
category. Hence, one could argue that these three categories constitute a hierarchy. For example, if 
an Automated Scoring system does not meet the performance criteria for the entire population, then 
evaluating its performance on subgroups may be less relevant. Therefore, we reported not only the 
total number of flags, but also the number of flags in each of the three categories. Note that we 
reported subgroup performance criteria even when an Automated Scoring system does not meet the 
absolute or relative criteria. 

Besides reporting flags for the Automated Scoring systems and the distribution of the statistics 
underlying the flagging criteria across items, we also reported the number of flags (total and in each 
category) for the human ratings (that is, based on the inter-rater comparison of the first and second 
human rater). Information on the number of flags received by human raters can be combined with 
the information on the Automated Scoring system to potentially diagnose different types of problems. 

For example, if the human raters received fewer flags than the Automated Scoring systems, then this 
is an indication that the scoring models developed for that item need to be improved. On the other 
hand, if the human raters received many flags as well, then it could be that performance of the 
Automated Scoring systems was limited by the quality of the human raters. In that case, perhaps the 
scoring rubric needs to be reevaluated. 
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Finally, we refined the summary designations based on the flagging criteria as presented in the Table 
3.3. This provided some additional information on type of item review that may be needed before an 
item can be considered for Automated Scoring. The different criteria in Table 3.3 were evaluated 
sequentially, in line with the hierarchical nature of the criteria. This ensured that each item was 
counted in only one reporting category. The reader should note, however, that when an item is 
designated as needing review for performance relative to final human score, for instance, this does 
not mean that the item should not also be reviewed for other criteria, for example, for performance 
for subgroups. 

Table 3.2. Grouped Evaluation Criteria 

Category Flagging Criterion  Flagging Threshold 

Performance evaluated by 
comparing against final human 
score of record 

Quadratic weighted kappa for 
engine score and human score  

Quadratic weighted kappa less than 
0.70  

Pearson correlation between 
engine score and human score  

Correlation less than 0.70  

Standardized difference (SMD) 
between engine score and human 
score  

Standardized difference greater than 
0.12 in absolute value. (Flags will be 
separately reported for items with SMD 
> 0.12 and with SMD < -0.12).  

Performance evaluated by 
comparing against inter-rater 
agreement of the two initial 
human raters 

Degradation in quadratic weighted 
kappa from human-human to 
engine-human  

Decline in quadratic weighted kappa 
greater than or equal to 0.10  

Degradation in correlation from 
human-human to engine-human  

Decline in correlation greater than or 
equal to 0.10  

Notable reduction in perfect 
agreement rates from human-
human to engine-human  

Decline greater than or equal to 0.05  

Performance evaluated for 
different subgroups (when 
sample size is sufficient). 

Standardized difference between 
engine score and human score for 
a subgroup 

Standardized difference greater than 
0.10 in absolute value 
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Table 3.3. Summary Designations 

Flagging Criterion  Summary Designation 

No flags Meets all criteria 

No flags from the first category, but one or two flags 
from the second category 

Needs additional review for performance relative to 
inter-rater agreement 

No flags from the first category, but three flags from 
the second category 

Not suited for Automated Scoring 

No flags from the first or second category, but one or 
more flags from the third category 

Needs additional review for subgroup performance 

One flag from the first category Needs additional review for performance relative to 
final human score  

Two or more flags from the first category Not suited for Automated Scoring 

Eight or more flags (total) Not suited for Automated Scoring 

Automated Scoring of Short-Text Items 

The results are presented in the following order: 

• 21 ELA/literacy short-text, constructed response, items for which four Automated Scoring 
systems were trained and the remaining 45 ELA/literacy short-text, constructed response 
items for which one Automated Scoring system was trained. 

• 41 mathematics short-text, constructed response, items developed to test mathematical 
reasoning, for which two Automated Scoring systems were trained. 

• 21 mathematics short-text, constructed response items for which four Automated 
Scoring systems were trained and the remaining 176 mathematics short-text, 
constructed response, items for which one Automated Scoring system was trained. 

Table 3.4 presents the summary results for the ELA/literacy short-text, constructed-response, items 
for the human inter-rater agreement, the top performing Automated Scoring system for each item, 
the four Automated Scoring systems trained for 21 items, and the human inter-rater agreement and 
one Automated Scoring system trained for the remaining items.  

Details for each item are presented in Appendix 3.A: inter-rater agreement between the two human 
raters for 21 items (Table 3.A.1), the top-performing Automated Scoring system for each of the 21 
items (Table 3.A.2), Vendor 2 (Table 3.A.3), Vendor 3 (Table 3.A.4), Vendor 6 (Table 3.A.5), Vendor 9 
(Table 3.A.6), inter-rater agreement between the two human raters for the remaining items (Table 
3.A.7) and Vendor 3 for the remaining items (Table 3.A.8). 
  



Chapter 3: 
Automated  

  Scoring Evaluation 
 

20 
Copyright © 2014 by Smarter Balanced Assessment Consortium 

Table 3.4. Average Rater Agreement Statistics, ELA/literacy—Short-text Items 

Rater SMD 

Agreement Statistics Flags 
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H1H2  
(21 items) -0.02 0.69 0.70 79 99 1.76 1.19 0.00 0.57 

Top 0.01 0.75 0.76 84 100 0.81 0.33 0.05 0.43 

Vendor 2 0.04 0.74 0.75 82 100 1.57 0.52 0.05 1.00 

Vendor 3  
(21 items) 0.06 0.75 0.75 83 100 1.81 0.48 0.05 1.29 

Vendor 6 0.02 0.73 0.74 82 100 2.00 0.62 0.00 1.38 

Vendor 9 -0.06 0.73 0.74 84 100 2.91 0.91 0.00 2.00 

H1H2  
(remaining items) 0.00 0.69 0.69 82 99 1.47 1.02 0.00 0.44 

Vendor 3  
(remaining items) 0.06 0.74 0.75 85 100 2.24 0.65 0.04 1.55 

Note: H1H2 = Human-human inter-rater agreement. Top = Top-performing Automated Scoring system. 

Out of 665 ELA/literacy short-text, constructed-response, items, human-human inter-rater agreement 
meets all criteria for 268 items (40%), requires review for absolute performance for 6 items (1%), 
requires review for subgroup performance for 55 items (8%), and does not meet performance criteria 
for 336 items (51%).  

Based on the top-performing Automated Scoring system, 261 items (39%) meet all criteria for 
Automated Scoring, 47 items (7%) require review for absolute performance, 4 items (1%) require 
review for performance relative to inter-rater agreement, 183 items (28%) percent require review for 
subgroup performance, and 170 items (26%) are not suited for Automated Scoring. 
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Table 3.5. Average Rater Agreement Statistics, Mathematical Reasoning and Mathematics—Short-text Items 

Rater SMD 

Agreement Statistics Flags 
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H1H2 (MR) 0.00 0.81 0.81 93 100 0.61 0.34 0.00 0.27 

Top (MR) 0.00 0.74 0.75 93 99 1.44 0.63 0.29 0.51 

Vendor 8 (MR) -0.09 0.64 0.67 92 99 4.24 1.17 0.59 2.49 

Vendor 3 (MR) 0.01 0.74 0.75 93 99 1.68 0.68 0.32 0.68 

H1H2  
(21 items) 0.00 0.86 0.86 92 100 0.24 0.19 0.00 0.05 

Top 
(21 items) 0.00 0.87 0.87 93 100 0.14 0.10 0.00 0.05 

Vendor 2 
(21 items) 0.01 0.85 0.85 92 100 0.81 0.19 0.14 0.48 

Vendor 3  
(21 items) 0.02 0.84 0.84 92 100 0.62 0.24 0.05 0.33 

Vendor 6 
(21 items) 0.00 0.83 0.84 92 100 1.05 0.29 0.14 0.62 

Vendor 9 
(21 items) -0.04 0.84 0.84 93 99 1.24 0.19 0.14 0.91 

H1H2  
(remaining items) 0.00 0.85 0.86 94 100 0.28 0.18 0.00 0.09 

Vendor 3  
(remaining items) 0.02 0.82 0.82 93 100 0.95 0.31 0.19 0.45 

Note: MR = Mathematical reasoning. H1H2 = Human-human inter-rater agreement. Top = Top-performing 
Automated Scoring system. 

Table 3.5 presents the summary results for the mathematical reasoning and other mathematics 
short-text, constructed-response, items for the human inter-rater agreement, the top performing 
Automated Scoring system for each item, the four Automated Scoring systems trained for 21 items, 
and the human inter-rater agreement and one Automated Scoring system trained for the remaining 
items.  
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Details for each item are presented in Appendix 3.B: inter-rater agreement between the two human 
raters for 21 items (Table 3.B.1), the top-performing Automated Scoring system for each of the 21 
items (Table 3.B.2), Vendor 2 (Table 3.B.3), Vendor 3 (Table 3.B.4), Vendor 6 (Table 3.B.5), Vendor 9 
(Table 3.B.6), inter-rater agreement between the two human raters for the remaining items (Table 
3.B.7) and Vendor 3 for the remaining items (Table 3.B.8). For the mathematical reasoning items, 
Table 3.B.9 presents inter-rater agreement between the two human raters, Table 3.B.10 the results 
for the top-performing Automated Scoring system for each item, Table 3.B.11 the results for Vendor 
3, Table 3.B.12 the results for Vendor 8. 

Out of 41 mathematics short-text, constructed-response, items developed to test mathematical 
reasoning, human-human inter-rater agreement meets all criteria for 29 items (71%), requires review 
for subgroup performance for 5 items (12%), and does not meet performance criteria for 7 items 
(17%). 

Based on the top-performing Automated Scoring system, 22 items (54%) meet all criteria, 2 items 
(5%) require review for absolute performance, 2 items (5%) require review for relative performance, 
4 items (10%) require review for subgroup performance, and 11 items (27%) are not suited for 
Automated Scoring. 

Out of the remaining 192 mathematics items, human-human inter-rater agreement meets all criteria 
for 164 items (85%), requires review for absolute performance for 1 item (1%), requires review for 
subgroup performance for 10 items (5%), and does not meet performance criteria for 17 items (9%). 

Based on the top-performing Automated Scoring system, 139 items (74%) meet all criteria, 3 items 
(2%) require review for absolute performance, 9 items require review for performance relative to 
inter-rater agreement, 12 items (6%) require review for subgroup performance, 24 items (25%) are 
not suited for Automated Scoring due to absolute performance and 4 items (2%) are not suited due 
to relative performance. 

Automated Scoring of Essay Items  

The functioning of 66 ELA/literacy essay items was evaluated. Each essay response was scored for 
three trait scores, namely trait A: Organization/Purpose; trait B: Evidence/Elaboration; and trait C: 
Conventions (referred hereafter as trait A, B, and C). Thus, this study evaluated the functioning of 
198 essay item/trait combinations. The essay items consisted of 66 item/traits worth 2 points 
(scored 0–2) and 132 item/traits worth 4 points (scored 0–4). According to the scoring rubric, some 
responses were assigned a non-numeric code (“condition code”), for example, when the response 
was off-topic. Any condition code was recoded as 0 for the purpose of the Automated Scoring 
evaluation.  

The results are presented in the following order: 

• 21 essay items for which three Automated Scoring systems were trained (a fourth 
Automated Scoring system was trained but did not score the validation sets). 

• 45 essay items for which two Automated Scoring systems were trained. 

A top-performing Automated Scoring system was identified for each item/trait based on the total 
number of flags and the QWK values from the agreement between the Automated scores and the 
final human score of record.  
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Table 3.6. Average Rater Agreement Statistics, Essay—21 Items  

Trait Rater SMD 

Agreement Statistics Flags 
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A H1H2 0.00 0.83 0.83 77 99 0.19 0.10 N/A 0.10 

A Top 0.02 0.82 0.82 76 98 0.71 0.19 0.24 0.29 

A Vendor 1 0.04 0.83 0.84 76 99 1.57 0.33 0.19 1.05 

A Vendor 3 0.03 0.83 0.83 77 98 0.86 0.19 0.24 0.43 

A Vendor 8 0.00 0.78 0.78 71 97 1.81 0.43 0.67 0.71 

B H1H2 0.00 0.82 0.82 76 98 0.38 0.19 N/A 0.19 

B Top 0.03 0.84 0.84 77 99 0.95 0.14 0.24 0.57 

B Vendor 1 0.04 0.83 0.83 76 99 1.33 0.19 0.29 0.86 

B Vendor 3 0.03 0.83 0.83 76 98 1.14 0.24 0.24 0.67 

B Vendor 8 0.01 0.77 0.77 70 97 2.14 0.52 0.67 0.95 

C H1H2 0.00 0.71 0.71 72 97 1.62 1.24 N/A 0.38 

C Top 0.01 0.74 0.74 74 98 0.76 0.38 0.10 0.29 

C Vendor 1 0.05 0.74 0.74 73 98 2.67 0.62 0.29 1.76 

C Vendor 3 0.00 0.74 0.74 74 98 1.00 0.43 0.14 0.43 

C Vendor 8 0.00 0.61 0.62 64 95 6.33 2.19 1.10 3.05 

Note: H1H2 = Human-human inter-rater agreement. Top = Top-performing Automated Scoring system. 

 

Table 3.6 presents the summary results for the human inter-rater agreement, the top performing  
Automated Scoring system for each item, and the three Automated Scoring systems trained for these 
21 items. Details for each item are presented in Appendix 3.C: inter-rater agreement between the 
two human raters for 21 items (Table 3.C.1), the top-performing Automated Scoring system for each 
of the 21 items (Table 3.C.2), followed by the performance of Vendor 1 (Table 3.C.3), Vendor 3 (Table 
3.C.4), and Vendor 8 (Table 3.C.5) on 21 items. 
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For traits A and B, average performance of the top Automated Scoring system for each item, Vendor 
1, and Vendor 3 as measured by the agreement statistics was comparable to human inter-rater 
agreement, while Vendor 8 had slightly lower average performance. On average, standardized mean 
difference of the Automated Scoring systems was slightly above 0 but less than 0.05, with Vendor 8 
posting the best SMD, followed by Vendor 3, and finally Vendor 1.  

For trait C, average performance of the top Automated Scoring system for each item, Vendor 1 and 
Vendor 3, as measured by the agreement statistics, exceeded human inter-rater agreement, while 
Vendor 8 had lower average performance. On average, standardized mean difference of Vendor 3 
and Vendor 8 was equal to SMD of the human raters, while Vendor 1 posted a SMD exceeding 0.05. 

Based on the inter-rater agreement between two human raters, the following number of items were 
flagged: 

• Trait A: 18 items (86%) meet all criteria, 2 items (10%) need review for subgroup 
performance, and 1 item (5%) did not meet performance criteria. 

• Trait B: 17 items (81%) meet all criteria, 2 items (10%) need review for subgroup 
performance, and 2 items (10%) did not meet performance criteria, 

• Trait C: 7 items (33%) meet all criteria, 1 item (5%) needs review for subgroup 
performance, and 13 items (62%) did not meet performance criteria. 

Based on the top-performing Automated Scoring system for each item, the following number of items 
were flagged: 

• Trait A: 14 items (67%) meet all criteria, 3 items (14%) need review for performance 
relative to inter-rater agreement, 2 items (10%) need review for subgroup performance, 
and 2 items (10%) are not suited for Automated Scoring. 

• Trait B: 14 items (67%) meet all criteria, 3 items (14%) need review for performance 
relative to inter-rater agreement, 2 items (10%) need review for subgroup performance, 
and 2 items (10%) are not suited for Automated Scoring. 

• Trait C: 13 items (62%) meet all criteria, 3 items (14%) %) need review for performance 
relative to inter-rater agreement, and 5 items (24%) are not suited for Automated 
Scoring. 
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Table 3.7. Average Rater Agreement Statistics, Essay—45 Items  

Trait Rater SMD 

Agreement Statistics Flags 
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A H1H2 0.00 0.86 0.86 77 99 0.13 0.04 0.00 0.09 

A Top 0.03 0.86 0.86 77 99 0.69 0.07 0.22 0.40 

A Vendor 1 0.04 0.85 0.85 76 99 0.98 0.11 0.33 0.53 

A Vendor 3 0.03 0.86 0.86 77 99 0.78 0.07 0.22 0.49 

B H1H2 0.01 0.85 0.85 77 99 0.13 0.04 0.00 0.09 

B Top 0.02 0.86 0.86 78 99 0.47 0.04 0.24 0.18 

B Vendor 1 0.04 0.84 0.85 76 99 0.98 0.11 0.36 0.51 

B Vendor 3 0.03 0.86 0.86 78 99 0.78 0.07 0.24 0.47 

C H1H2 0.01 0.73 0.73 73 97 1.31 1.07 0.00 0.24 

C Top 0.02 0.77 0.77 76 98 0.71 0.18 0.24 0.29 

C Vendor 1 0.04 0.76 0.76 74 98 1.78 0.27 0.31 1.20 

C Vendor 3 0.00 0.77 0.77 76 98 1.13 0.22 0.27 0.64 

Note: H1H2 = Human-human inter-rater agreement. Top = Top-performing Automated Scoring system. 

 

Table 3.7 presents the summary results for the human inter-rater agreement, the top performing  
Automated Scoring systems, and the two Automated Scoring systems trained for the remaining 45 
items. Details for each item are presented in Appendix 3.C: inter-rater agreement between the two 
human raters (Table 3.C.6), the top-performing Automated Scoring system for each item (Table 
3.C.7), Vendor 1 (Table 3.C.8), and Vendor 3 (Table 3.C.9). 

For traits A and B, average performance of the top Automated Scoring system for each item, Vendor 
1 and Vendor 3, as measured by the agreement statistics, was comparable to human inter-rater 
agreement. On average, standardized mean difference of the Automated Scoring systems was 
slightly above 0 but less than 0.05, with Vendor 3 posting better SMD than Vendor 1.  

For trait C, average performance of the top Automated Scoring system for each item, Vendor 1 and 
Vendor 3, as measured by the agreement statistics, exceeded human inter-rater agreement. On 
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average, standardized mean difference of Vendor 3 was equal to the SMD of the human raters, while 
Vendor 1 posted a SMD exceeding 0.04. 

Based on the inter-rater agreement between two human raters, the following number of items were 
flagged: 

• Trait A: 42 items (93%) meet all criteria, 2 items (4%) need review for subgroup 
performance, and 1 item (2%) did not meet performance criteria. 

• Trait B: 42 items (93%) meet all criteria, 2 items (4%) need review for subgroup 
performance, and 1 item (2%) did not meet performance criteria. 

• Trait C: 19 items (42%) meet all criteria, 2 items (4%) need review for absolute 
performance, 1 item (2%) needs review for subgroup performance, and 23 items (51%) 
did not meet performance criteria. 

Based on the top-performing Automated Scoring system for each item, the following number of items 
were flagged: 

• Trait A: 30 items (67%) meet all criteria, 10 items (22%) need review for performance 
relative to inter-rater agreement, 4 items (9%) need review for subgroup performance, 
and 1 item (2%) is not suited for Automated Scoring. 

• Trait B: 31 items (69%) meet all criteria, 9 items (20%) need review for performance 
relative to inter-rater agreement, 3 items (7%) need review for subgroup performance, 
and 2 items (4%) are not suited for Automated Scoring. 

• Trait C: 28 items (62%) meet all criteria, 5 items (11%) need review for performance 
relative to inter-rater agreement, 5 items (11%) need review for subgroup performance, 
and 7 items (16%) are not suited for Automated Scoring. 
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Automated Scoring Engine Descriptions 

Automated Scoring Engine Technical Description: Luis Tandalla (ASAP 1)  
(Open-Source Engine) 

A. Changes or updates from the Pilot Study: 

• The current engine uses the same methods and models for response cleaning, dictionary 
building, feature selection, training, and ensembling that were described in the Pilot 
Study. No major changes were made to the overall system. 

• There were several updates to the source code that improved the organization and 
readability, but the structure behind the system is the same. 

• Different values were tested for the different parameters of the engine using cross-
validation, and the combination that produces the highest quadratic weighted kappa was 
chosen. Fewer values were tested for the current engine than for the Pilot Study, so that 
the training time is reduced. The overall performance of the model is expected to be 
approximately the same. 

B. Lessons learned and road blocks. 

The following table shows the performance of the engine compared to a human rater: 

Content Item Group 

Quadratic Weighted Kappa 

Engine-
Human 

Human-
Human 

Absolute 
Difference 

ELA/literacy 46282 0.57 0.74 -0.17 

ELA/literacy 46348 0.79 0.82 -0.03 

ELA/literacy 46450 0.55 0.57 -0.02 

ELA/literacy 46517 0.77 0.77 0.00 

ELA/literacy 48247 0.83 0.80 0.03 

ELA/literacy 50932 0.68 0.74 -0.06 

ELA/literacy 51416 0.78 0.76 0.02 

ELA/literacy 46115 0.75 0.63 0.12 

ELA/literacy 46121 0.72 0.73 -0.01 

ELA/literacy 46203 0.74 0.79 -0.05 
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Content Item Group 

Quadratic Weighted Kappa 

Engine-
Human 

Human-
Human 

Absolute 
Difference 

ELA/literacy 49151 0.59 0.52 0.07 

ELA/literacy 50577 0.88 0.97 -0.09 

ELA/literacy 50786 0.53 0.44 0.09 

ELA/literacy 50868 0.72 0.59 0.13 

ELA/literacy 53040 0.86 0.82 0.04 

Mathematics 45535 1.00 0.99 0.01 

Mathematics 48558 0.92 0.96 -0.04 

Mathematics 48560 0.94 0.89 0.05 

Mathematics 49790 0.94 0.90 0.04 

Mathematics 52909 0.83 0.78 0.05 

Mathematics 46597 0.70 0.73 -0.03 

Mathematics 46619 0.88 0.83 0.05 

Mathematics 46793 0.93 0.94 -0.01 

Mathematics 51802 0.65 0.70 -0.05 

Mathematics 53299 0.64 0.59 0.05 

 

• The performance of the engine is similar to a human rater’s performance for most of the 
items. In general, the engine performs better for mathematics items. For ELA/literacy 
items, the engine performance differs considerably from a human rater’s performance, 
such as with item 46282.  

• The engine rates the responses mostly based on the content. The reason for the 
difference in performance with ELA/literacy and mathematics items could be that 
ELA/literacy responses are slightly more open ended than mathematics responses. The 
lexicon used for those responses are more broad, so it is hard for the engine to learn all 
the possible words for all the possible correct responses. 
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C. Suggestions for future research. 

• A possible method to improve the performance for ELA/literacy responses could be to 
treat those responses as long answer essays. An engine that grades based on content 
and also on style may be able to perform better on ELA/literacy responses. In the current 
engine, adding additional features, such as labeling each word with part of speech tags, 
may add the capability of rating style in the responses.  
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Automated Scoring Engine Technical Description: Jure Žbontar (ASAP 2)  
(Open-Source Engine) 

A. Changes or updates from the Pilot Study: 

• This scoring engine is based on machine learning. Five models (Ridge Regression, 
Support Vector Regression, Gradient Boosting Machines, k-Nearest Neighbors, and 
Random Forest Regression) were trained with different hyperparameter settings and 
different preprocessing methods to obtain 30 trained models. After training, the 
predictions from the individual models were combined with Ridge Regression to obtain 
the final score. For details on the models and dataset construction, see Short Answer 
Scoring by Stacking (Žbontar, 2012). 

• An advantage of using machine learning is that the rules used to score the answers are 
automatically inferred from the data, rather than coded by hand, which means that 
relatively little had to be changed from the Pilot Study. For the current study, it was 
necessary to retrain the models on the 21 response items for this study. New models 
were also added to the ensemble in order to improve the accuracy from the Pilot Study. 
The models that gave the overall best score on internal 5-fold cross-validation are shown 
in the table below. 

Name Description 

1w linr Ridge regression on 1w data 

4c linr Ridge regression on 4c data 

6c linr Ridge regression on 6c data 

4cc linr Ridge regression on 4cc data 

6cc linr Ridge regression on 6cc data 

4cp200 linr Ridge regression on 4cp200 data 

4cp500 linr Ridge regression on 4cp500 data 

1w gbr 3 1 Gradient boosting (max depth=3, max features=1) on 1w data 

1w gbr 4 0.5 Gradient boosting (max depth=4, max features=0.5) on 1w data 

4c gbr 3 1 Gradient boosting (max depth=3, max features=1) on 4c data 

4c gbr 4 0.5 Gradient boosting (max depth=4, max features=0.5) on 4c data 

4c gbr 5 0.5 Gradient boosting (max depth=5, max features=0.5) on 4c data 
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Name Description 

4cc gbr 3 1 Gradient boosting (max depth=3, max features=1) on 4cc data 

4cc gbr 3 1 Gradient boosting (max depth=3, max features=1) on 4cc data 

4cc gbr 4 0.5 Gradient boosting (max depth=4, max features=0.5) on 4cc data 

4cc gbr 5 0.5 Gradient boosting (max depth=5, max features=0.5) on 4cc data 

4cp200 gbr 3 1 Gradient boosting (max depth=3, max features=1) on 4cp200 data 

4cp500 gbr 3 1 Gradient boosting (max depth=3, max features=1) on 4cp500 data 

4c libsvm Support vector machine on 4c data 

6c libsvm Support vector machine on 6c data 

4cc libsvm Support vector machine on 4cc data 

6cc libsvm Support vector machine on 6cc data 

4cp200 libsvm Support vector machine on 4cp200 data 

4cp500 libsvm Support vector machine on 4cp500 data 

4c rf sparse Random forest on sparse 4c data 

4cc rf sparse Random forest on sparse 4cc data 

4c knn k-nearest neighbor on 4c data 

6c knn k-nearest neighbor on 6c data 

4cc knn k-nearest neighbor on 4cc data 

4cp200 knn k-nearest neighbor on 4cp200 data 

4cp500 knn k-nearest neighbor on 4cp500 data 

Note: For the description of the different preprocessing methods (1w, 4c, 6c, 4cc, 6cc, 4cp200, 
and 4cp500) see Short Answer Scoring by Stacking (Žbontar, September 2012). 

B. Lessons learned and road blocks: 

• Use machine learning to build automated scoring engines. With the availability of large 
datasets it is now possible to build systems that automatically infer scoring rules from 
training data, instead of relying on human hand-engineering. These systems are cheaper 
to build, can automatically adapt to new domains, and can outperform other approaches, 
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as was demonstrated on the ASAP competition where all the top performing entries used 
some form of machine learning. Systems built with this approach will only get better as 
bigger datasets become available to train them. 

• Instead of training a single model, a better approach is to train an ensemble of models 
and combine their predictions. It is often the case that the accuracy of the combined 
model is better than the accuracy of the best model in the ensemble. While this method 
has been around for more than 20 years (Wolpert, 1992), it tends to be underrated. This 
is how almost all machine learning competitions today are won; the most famous one 
arguably being the $1 million Netflix prize. 

C. Suggestions for future research: 

• Use more models in the ensemble. One particular model to include is Deep Convolutional 
Neural Networks, which have been beating previous state-of-the-art results in many 
different tasks (e.g. object classification, image segmentation, and stereo vision). It 
would be interesting to see how these models could be applied to the problem of 
automated scoring. 

• Experiment with different dataset representations. Each response is currently 
represented as a bag of character 4-grams and 6-grams. Recently, there has been some 
interesting work on text representation (Mikolov et al., 2013). Since the source code of 
word2vec is available online, it should be easy to determine whether the new 
representation would increase accuracy. 

• Change the training procedure to improve the accuracy of the ensemble. When the final 
prediction is an average of the predictions of many models, it helps if the individual 
models overfit the training data (i.e. have low bias and high variance). A simple example 
is the Random Forest classifier which works better with unpruned decision trees, even 
though the accuracy of the individual trees is higher if they are pruned. 

• Choose models that overfit by running the original training procedure and then modifying 
the hyper-parameters, e.g. for Ridge Regression and Support Vector Regression, 
decrease the value of the regularization parameter, for k-Nearest Neighbors, increase the 
value of k, etc. 

• Learn a single model to output the same predictions as the ensemble in order to 
decrease the resources necessary to run the model at test time. When the program is 
asked to score a response it must run all 30 models in the ensemble, which can be time 
consuming. It has recently been demonstrated by Hinton (unpublished work, 
https://www.youtube.com/watch?v=EK61htlw8hY) that it is possible to build a single 
model that has comparable accuracy to the ensemble. The advantage is lower running 
time and ease of deployment. 

 

  

https://www.youtube.com/watch?v=EK61htlw8hY
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Automated Scoring Engine Technical Description: Pawel Jankiewicz (ASAP 5)  
(Open-Source Software) 

D. Changes or updates from the Pilot Study and Lessons learned and road blocks: 

• Structure of the models.  
In the prior version, the scores were modeled as regression task. The scores were 
predicted using ordinal grading system. The prediction was a real number which was 
then transformed to a discrete grade using "grade on a curve" transformation—meaning 
that the share of each grade was calculated in all observations in the training 
observations and then applied to new data. 

The previous approach, while giving satisfactory results, is very biased. It evaluates the 
essays using previous distribution of grades. This can lead to untrue evaluation if the new 
essays come from a different distribution. 

For this reason and also because for this study, the models had to predict the probability 
of each score, it was decided to change the structure of the models. To create a model 
for n scores, an n of independent models were used. Whichever grade had the highest 
probability was chosen as a final score. It also made blending of the models more 
obvious. 

• Choice of the models 
Apart from using sklearn GradientBoostingClassifier (http://scikitlearn. 
org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html), it 
was decided to try: 

- a new boosting library xgboost (https://github.com/tqchen/xgboost) 

- a deep learning library nolearn (https://github.com/dnouri/nolearn) 

xgboost (https://github.com/tqchen/xgboost) is a remarkable implementation of a tree 
boosting algorithm. It is unique because it allows training trees using many cores. 

• Data preprocessing 
Mathematics 
For this study, 50% of the essays were mathematics items. Much time was spent trying 
to clean the mathematics responses to normalize them in every possible way. 

text to math 
text_to_math is a new module to convert any numbers written in English to a digit 
representation number. 

Some examples of transformations: 
1. replaces one with 1, two with 2, ... 

2. replaces 2 out of 4 with 2/4 

https://github.com/tqchen/xgboost
https://github.com/dnouri/nolearn
https://github.com/tqchen/xgboost
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3. replaces thirds with 1/3, fourths with 1/4 

Formulas simplifications 
After mathematics cleaning it is possible to evaluate the mathematics expressions in the 
response. Counting the number of true expressions is a powerful feature. 
2  PLUS  2  EQUALS  4 -> 4=4 
 
2/2 PLUS  1  EQUALS  2 -> 2=2 
 
2  TIMES 2  PLUS  2  EQUALS  7 -> 6=7 
 
NO  BECAUSE   6  AN   6  = 12  IN ADDITRON -> NO  BECAUSE    12=12 IN ADDITRON 
 
6  + 6  = 12  AND   9  + 9  = 18 -> 12=12 AND   18=18 

• Pipeline 
The code needed to transform the data was refactored. Pipelines (pipelines.py) are now 
lists of steps needed to go from the raw essay text to features. 

A simple pipeline created three feature sets: 

- length of original essay text 

- length of stemmed essay text 

- 1-, 2-, and 3-grams for stemmed essay text 

Each pipeline defined this way can be applied to a response collection. Eight different 
pipelines were created, which enabled testing different features. 

• New features 
- wikipedia n-gram coverage. The pre-calculated 1-, 2-, 3-grams from Wikipedia 

were downloaded. A coverage of the n-grams in the essay was used as a feature. 
For example if all 2-grams in the essay were seen on Wikipedia, that is a score of 
1.0. If all 2-grams are novel, that is a score 0.0. This gives models some valuable 
information about the style of the essay. 

- sentiment analysis. Using TextBlob (https://github.com/sloria/TextBlob) library, 
additional features likesentiment_polarity and sentiment_subjectivity were 
calculated. Both features turned out to be quite useful. 

- character based n-grams. Apart from standard word-based n-grams. It was 
decided to add character based n-grams (from 1 up to 4-grams in some 
pipelines). This proved to be very valuable transformation. 

- language probability. To recognized texts written in different languages, a Python 
library lang.id (https://github.com/saffsd/langid.py) was used. The probability of 
the language being English, French and Spanish was calculated. 

- word2vec clusters. word2vec (https://code.google.com/p/word2vec/) is a 
powerful library to calculate word embeddings. Each word is represented as a 
vector of n real numbers. Pre-computed vectors from news articles were used. A 
quote from the https://code.google.com/p/word2vec/: 

https://github.com/saffsd/langid.py
https://code.google.com/p/word2vec/
https://code.google.com/p/word2vec/
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“We are publishing pre-trained vectors trained on part of Google 
News dataset (about 100 billion words). The model contains 300-
dimensional vectors for 3 million words and phrases.” 
 
It was decided to cluster semantically similar words into clusters. The number of clusters 
was chosen to be d / 4. Where d is the number of unique words in the essay dictionary 
(bag of words). The reason for this was to force to group sparse features into more dense 
representation. 

• Model ensemble 
In total, 107 different model types and parameters were generated. For the most difficult 
essays, additional models were generated. Altogether there were 2,219 models.  

To merge the results of the models, direct optimization of the weighted kappa metric was 
tried. Unfortunately this resulted in very poor generalization. The coefficients began to 
over fit to the training data. To limit its learning potential, the regularization procedure 
shown below was used: 

repeat 40 times 
     sample 50% of the training observations 
     optimize weighted kappa on the sample 
     save coefficients 
calculate average coefficients for each model 
 

This resulted in better generalization. 
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Automated Scoring Engine Technical Description: TurnItIn/LightSide Labs  
(Open-Source Software) 

A. Changes or updates from the Pilot Study: 

• There is not a great deal of difference between the engine that was used on the Pilot 
Study and the one used for the Field Test. Techniques have been added for optimizing 
essay and short answer models, as well as for improving the speed with which the 
optimum model parameters are found. In addition, various changes and de-bugging have 
been made to the Researcher’s Workbench since the Pilot Study. 

B. Lessons learned and road blocks: 

• Adding word and part-of-speech trigrams improves model performance, at the cost of 
processing time. The models generated during the Pilot Study used word unigrams and 
bigrams, part-of-speech bigrams, and character trigrams and 4-grams. Through 
experimentation, it was discovered that adding word trigrams and part-of-speech 
trigrams, while reducing character n-grams to only 4-grams, had a net positive effect on 
the average quadratic weighted kappa of the models. The cost of adding these trigrams 
is that a) the feature space is now measured in tens to hundreds of thousands of 
features for data sets of this size, which requires more computer memory to work with 
and b) searching over the additional feature sets requires more processing time during 
the training phase. Fortunately, it does not have a large adverse effect on the processing 
time of generating predictions, which is where efficiency is critical in order to scale 
properly. 

• By using average essay length of the training set, the naïve Bayes or Logistic Regression 
classifiers can be intelligently chosen. The TurnItIn/LightSide Labs engine can use many 
different types of classifiers, from Support Vector Machines (SVMs) to Decision Trees to 
k-Nearest Neighbors and so on. It is generally found that for classifying essay-type data, 
naïve Bayes tends to outperform the other classifiers. However, during the Pilot Study it 
was noted that Logistic Regression with a strong regularizer tends to outperform naïve 
Bayes on short answer data. This insight was used to build an average text length cutoff 
feature into the proprietary optimizer that can automatically choose whether to try naïve 
Bayes, Logistic Regression, or both. During the Field Test, that cutoff was set such that if 
the average text length of the training set was less than 350 characters, the optimizer 
would only try Logistic Regression; if the average length was greater than 450 characters, 
it would only try naïve Bayes; and if it was in between those two points, it would try both. 
This resulted in a significant speed up during training, as many possible optimization 
paths were able to be culled automatically. 

• When using Logistic Regression with TurnItIn/LightSide Labs feature selection process 
on short answer data, L1 regularization tends to outperform L2 regularization. During the 
Pilot Study, Logistic Regression was only used with L2 regularization. However, L1 
regularization, which is a stronger regularizer than L2, tended to outperform L2 on the 
mathematics short answer data of the Field Test. The optimizer only preferred L2 
regularization over L1 on 8 of the 41 short answer mathematics questions that were 
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modeled. No correlation was found between the chosen regularizer and external item 
metadata. 

• Increasing the number of options for the chi-squared feature selection threshold 
improves model performance, at the cost of processing time. The proprietary optimizer 
uses grid search with 10-fold cross-validation to search over different parameter 
combinations in order to select the optimal set for a given model. One of those 
parameters is the number of features selected by the chi-squared feature selection 
process. It was found that expanding the possible values of that parameter led to better 
models, at the cost of processing time during the search. The values searched over for 
the Field Test data sets were 500, 1000, 2500, 5000, and 7500. 

• When using Logistic Regression with TurnItIn/LightSide Labs feature selection process 
on short answer data, tuning the misclassification cost can lead to better models. The 
Logistic Regression models generated during the Pilot Study used a fixed 
misclassification cost (the C parameter in LIBLINEAR) of 1.0. It was found that by tuning 
that parameter, we were better able to fit the data. The parameter was tuned, like all of 
our model parameters, in the optimizer by using grid search with 10-fold cross-validation. 
The values that we searched over were 0.1, 1.0, and 10.0. 

 

  



Chapter 3: 
Automated Scoring Evaluation 

 
 

38 
Copyright © 2014 by Smarter Balanced Assessment Consortium 

Automated Scoring Engine Technical Description: CTB 
(Proprietary Engine) 

A. Changes or updates from the Pilot Study: 

• We replaced our methods for prediction, replacing neural networks with a wide range of 
classifiers that include Random Forests, Support Vector Machines (SVMs), and Logistic 
Regression. 

• We developed new content-based features. We revised the method for feature selection. 
Because features may not necessarily have good discriminative power to classify or 
predict scores, it is required to select the features that have good discriminative 
information across scores. For better classifier performance, the available features are 
ranked and then selected based on how close or how far the two distributions of scores 
for a certain feature are.  

• We perform automatic model selection through cross-validation, based on a 
customizable objective function. The models predict class probabilities as well as scores. 
Final scores are computed from the predictions using bias-reducing algorithm. 

• We developed new methods to identify condition code papers. 

B. Lessons learned and road blocks: 

• During the Pilot Study, it became clear that we needed a more nimble system—and 
developed a totally new architecture that includes seamless use of multiple feature sets, 
classifiers, and training sets per prompt, as configured by the user. This system enables 
CTB to train high-quality automated scoring models tailored to specific prompts. 

C. Suggestions for future research: 

• We are designing a new set of features that can be used to score source-based essays 
that are being developed to conform to the Common Core State Standards. 
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Automated Scoring Engine Technical Description: Measurement Incorporated (PEG)  
(Proprietary Engine) 

A. Changes or updates from the Pilot Study: 

• Since the Pilot Study, experience in handling the data flow improved across the board. 
There were still a few unexpected artifacts in the rules and content (e.g. some reader 
disagreements that did not have a third reader arbitration, some control characters, such 
as 0x02 in a few files, etc.), but the import and data handling experience was much 
smoother than during the Pilot. The actual processing was very similar to the work for the 
Pilot Study, but using pre-established conventions (for instance, treating condition codes 
as scores-of-zero) also made the training and prediction process more fluid. 

B. Lessons learned and road blocks: 

• Aside from the relatively minor data issues mentioned above, there were only a few 
stumbling blocks. One was the presence of large (occasionally > 1,000,000 character-
long) essays. These were invariably copy-paste efforts which were given a zero score, but 
they slowed down the internal file handling somewhat. A larger stumbling block was the 
presence of training sets with quite skewed scores (an example might be training set of 
1,500 responses for an item with a score range of 0-2, then finding about 1,450 items 
with a score of 0, perhaps about 50 items with a score of 1, and possibly no items with a 
score of 2). A number of techniques were used to identify and manage this type of 
training data, but obtaining a high QWK in such situations was often quite difficult, as 
there were so few non-zero scores that were available for our Automated Scoring system 
to train upon. There was also a related problem in predicting condition codes, as often 
the coded responses would be too few, or different codes might be found for very similar 
responses. 

C. Suggestions for future research: 

• We are constantly looking for ways to fold new research into our process. For instance, 
meta-cognitive evaluation of the methods we use to best accommodate skewed training 
samples. 
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Chapter 4: Continued Read-Behind Studies 
High-stakes assessment programs typically use more than one human rater to score constructed-
response items to reduce rater effects. For instance, performance tasks that are part of admissions 
or licensure tests are often scored by two human raters (Ramineni & Williamson, 2013). In such a 
scoring scenario, a senior, expert rater usually adjudicates any disagreement in the scores given by 
the first and second rater. Averaging the two initial ratings is another possibility when the 
assessment program allows for fractional scores. 

Any multiple-rater scoring scenario (with adjudication) needs multiple reads per response, which 
increases scoring costs. Therefore, testing programs may consider using a single-rater scoring 
scenario, in which each response is scored by a single human rater or a single Automated Scoring 
system. An obvious disadvantage of these scoring scenarios is that second reads can no longer be 
used to ensure score quality. Instead, assessment programs seek to ensure score quality through 
other methods. Measures typically implemented include check-reads (raters need to qualify for 
scoring on a selected set of responses) and a limited percentage of second reads (e.g., a second 
rater for 10% of the responses).  

There is increasing interest in alternative scoring scenarios which combine human and Automated 
Scoring. These scoring scenarios potentially offer both cost savings as well as high score quality. For 
example, ETS has been using its Automated Scoring system (e-rater®) in place of a second human 
rater on the Test of English as a Foreign Language (TOEFL) since 2009 (Trapani, Bridgeman, & 
Breyer, 2011). Another possibility is to use Automated Scoring systems to detect responses likely to 
require human review. These latter methods are the topic of other studies (see e.g., Chapter 5 of this 
report and Chapter 4 of the Pilot Study report) and will not be considered here. 

Several scoring scenarios (“read and read-behind scenarios”) were investigated in the Pilot Study. 
These scenarios can be categorized based on  

1. the number of raters (one or two),  

2. the type of the first and second rater (human or Automated Scoring system), and  

3. the adjudication rule which determines when scores from the first and second rater need 
to be adjudicated by a third rater: 

a. adjudicate when the scores of the first and second rater disagree (non-exact) 

b. adjudicate when the scores of the first and second rater differ by more than 1 
score point (non-adjacent) 

A total of eight different read and read-behind scenarios were investigated as part of the Pilot Study. 
These scoring scenarios are summarized in Table 4.1. See Chapter 3 of the Pilot Study report for 
additional details. Note that the term read-behind was chosen over the more familiar term second-
read to emphasize the following point: Consider a scoring scenario with two raters, a human reader 
and an Automated Scoring system. We say that the Automated Scoring system reads behind the 
human rater, because the final score of record will always be assigned by a human—either the first 
human reader or a senior, expert human rater in case of adjudication. In other words, the Automated 
Scoring system is used only to determine whether a response requires an additional human read. 
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Table 4.1. Read and Read-Behind Scenarios Investigated during the Pilot Study 

Scenario Number of Raters First Rater Read-Behind Rater Adjudication Rule 

1 

Single rater 

Human   

2 
Top-performing 

Automated Scoring 
system 

  

3 

Two raters 

Human Human 
Non-exact 

4 Non-adjacent 

5 
Human 

Top-performing 
Automated Scoring 

system 

Non-exact 

6 Non-adjacent 

7 Top-performing 
Automated Scoring 

system 

Second-best 
performing 

Automated Scoring 
system 

Non-exact 

8 Non-adjacent 

 

An important research question is the practical impact these different scoring scenarios have on the 
score quality, as compared to a baseline scenario. To answer this question, in the Pilot Study 
scenario scores of record for each of the read and read-behind scenarios were constructed from 
available data. This allowed a comparison of the impact each scenario would have had on score 
quality if it had been used. The final human score of record served as a baseline in the comparisons; 
these scores were produced using Scenario 3. This scoring scenario was chosen as baseline as it 
represents a fully human scoring scenario. 

Scoring scenarios were compared on five English language arts (ELA)/literacy short-text, constructed-
response, items; three mathematics short-text, constructed-response, items; and five ELA/literacy 
essay items. Table 4.2 presents the results for the mathematics items—the pattern was similar for 
the ELA/literacy short-text, constructed-response, and essay items (see the Pilot Study report for 
details). Note that only four read-behind scenarios applied to the mathematics items, because these 
items were scored 0 or 1. Hence, there were no non-adjacent scores and only non-exact adjudication 
applied. 
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Table 4.2. Agreement Statistics Summarized by Scenario, Mathematics 

Scenario 

Average 

SMD Kappa 
Quadratic 
Weighted 

Kappa 
Correlation Percent 

Agree 

Percent 
Adjacent & 

Agree 

Human-human 0.01 0.79 0.79 0.76 0.88 1.00 

1 0.02 0.90 0.90 0.89 0.94 1.00 

2 0.06 0.86 0.86 0.83 0.92 1.00 

5 0.02 0.98 0.98 0.96 0.98 1.00 

7 0.05 0.89 0.89 0.88 0.94 1.00 

Note: See Appendix 3.D for a brief description of some of these rater agreement statistics. 

Comparing the single-read scenarios (Scenarios 1 and 2) to the human-human inter-rater agreement 
statistics, the average score quality of the single-read scenarios was (very) high. An even higher 
score quality was achieved in the scenario where the best-performing Automated Scoring system 
served as read-behind for a single human rater (Scenario 5). The increase in rater agreement 
statistics demonstrates the positive effect read behind and adjudication can have on score quality. 

Although these results are promising, a major methodological limitation of the Pilot Study is that the 
first human rater was used to construct scenario scores of record for Scenarios 1 and 3-6. However, 
this rating was also used to determine the final human score, which was used as a baseline in score 
quality comparisons. In other words, these ratings were not independent of the baseline score. 
Therefore, the score quality of several of the read-behind scenarios may have been inflated; in 
particular, the benefits of using a single human rater (Scenario 1) and an Automated Scoring system 
read-behind (Scenario 5) may have been overstated. 

To mitigate this effect, ratings from another set of human raters are needed, produced 
independently from the scoring process resulting in the final scores of record. Such ratings, however, 
were not available during the Pilot Study, because collecting these data was organizationally 
challenging.  

Purpose 

The present study extended the research on read and read-behind scenarios conducted as part of 
the Pilot Study.  

First, ratings from an independent human rater were collected as part of the Field Test, to address 
the methodological limitations of the research during the Pilot Study. With these data, several read-
behind scoring scenarios studied in the Pilot Study (as described in Table 4.1) were reexamined and 
new scenarios were investigated. 

Second, the human-Automated Scoring system read-behind scenarios during the Pilot Study 
considered only the top-performing Automated Scoring systems as a read-behind for human raters. 
However, that leaves the question of how the quality of the Automated Scoring system impacts the 
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results of the read-behind scenarios. Thus, the second-best Automated Scoring system was also 
considered as a read-behind rater. Finally, the scoring scenario where both Automated Scoring 
systems serve as read-behind (double read-behind) was also considered.  

In summary, eleven scoring scenarios were investigated as part of the Field Test studies (see  
Table 4.3). 

Table 4.3. Read and Read-Behind Scenarios Investigated during the Field Test Study 

Scenario Number of Raters First Rater Read-Behind 
Rater(s) Adjudication Rule 

1 

Single rater 

Independent 
human reader   

2 
Top-performing 

Automated Scoring 
system 

  

3 

Second-best 
performing 

Automated Scoring 
system 

  

4 

Two raters 

Independent 
human reader 

Top-performing 
Automated Scoring 

system 

Non-exact 

5 Non-adjacent 

6 Second-best 
performing 

Automated Scoring 
system 

Non-exact 

7 Non-adjacent 

8 Top performing 
Automated Scoring 

system 

Second-best 
performing 

Automated Scoring 
system 

Non-exact 

9 Non-adjacent 

10 

Second-best 
performing 

Automated Scoring 
system 

Top-performing 
Automated Scoring 

system 
Non-adjacent 

11 Three raters Independent 
human reader 

Top-performing and 
second-best 

Automated Scoring 
systems 

Non-exact 
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Methodology 

The methodology of this study generally follows the methodology of the read and read-behind study 
conducted during the Pilot Study, except that independent human ratings were also collected. 
Additionally, more items (21 compared to 13) and more scoring scenarios (11 compared to 8) were 
considered. 

Data Source 

The primary data sources for this study consisted of seven ELA/literacy short-text, constructed-
response, items; seven mathematics short-text, constructed-response, items; and seven ELA/literacy 
essay items. The items were selected to cover several different types of short-text, constructed-
response, items (reading, research, or writing) and essay items corresponding to different writing 
purposes (informational, explanatory, argumentative, or narrative).  

These items were administered as part of the online Field Test. ELA/literacy short-text, constructed-
response, items were scored on a scale from 0 to 2 points, mathematics short-text, constructed-
response, items were scored 0 or 1 point, and essay items were scored on three traits (trait A 
[Organization/Purpose], 1–4 points; trait B [Evidence/Elaboration], 1–4 points; and trait C 
[Conventions], 0–2 points).  

As part of the Field Test, each item was handscored by two human raters. When the two (initial) 
raters assigned the same score, this was the final score for the response. If the scores of the two 
human raters did not agree exactly, then the response was routed to a third, expert rater who 
assigned the final score (non-exact adjudication). This final score served as the baseline score of 
record. Automated Scoring systems were trained using these final scores. 

The responses also received one additional handscore by another trained human rater. This rater 
was a fully qualified human reader and experienced with the scoring rubric for the item. These 
ratings were not a part of the final score (and hence not adjudicated) but served as an independent 
human score in the read and read-behind scenarios. This reflected scoring scenarios where a single 
human rater scored responses (possibly in combination with an Automated Scoring system). The 
(possibly adjudicated) score from the other human raters served as the baseline score of record 
against which different scoring scenarios were compared. 

Procedures 

For each of the 21 items, about 500 responses in the validation set were available along with scores 
from each of the Automated Scoring systems that scored that particular item.  

• Each short-text, constructed-response, item had scores from four independently 
developed Automated Scoring systems.  

• Each essay item had scores from three independently developed Automated Scoring 
systems.  

For the purpose of this study, after evaluating the score quality of each Automated Scoring system 
using the evaluation criteria, the two Automated Scoring systems evaluated as the two highest 
performers were selected (by item for short-text, constructed-response, items and by item/trait for 
essay items). Performance was determined first by the total number of flags (fewer is better) and, 
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when Automated Scoring systems had the same number of flags, by quadratic weighted kappa 
(higher is better). 

Score quality for each scenario was evaluated using the criteria in the evaluation framework. This 
included the following agreement statistics: standardized mean difference (SMD), quadratic 
weighted kappa (QWK; Cohen, 1960, 1968), Pearson correlation, percent agreement, and percent 
adjacent and (exact) agreement. 

Averages for Pearson correlation and Cohen’s quadratic weighted kappa were computed using 
Fisher’s r-to-z transformation. This may produce less biased estimates of population correlations 
(Silver and Dunlap, 1987). Specifically, each correlation r was converted to a z-score before 
averaging, as follows: 

𝑧 =
1
2

ln
1 + 𝑟
1 − 𝑟

 

The average z-score, 𝑧̅, was then converted back to an average correlation �̅�: 

�̅� =
𝑒2�̅� − 1
𝑒2�̅� + 1

 

A similar procedure was used to average quadratic weighted kappa statistics. 

Scenarios with different adjudication rules differed in the number of responses that required a third 
read. Adjudication rates were computed for each scenario, where the adjudication rate was defined 
as the percentage of responses that required a third read under the scenario scoring rules.  

Results 

Tables 4.A.1–4.A.12 present detailed information by item for human-human inter-rater agreement as 
well as the eleven scoring scenarios investigated. Details presented in the appendix include mean 
and standard deviation of the focal and reference scores, standardized mean difference (SMD), 
quadratic weighted kappa (QWK), correlation, percent agreement, percent adjacent and (exact) 
agreement, and number of flags (total, absolute, relative, subgroup). The presentation in this chapter 
focuses on summarizing these results.  

ELA/literacy short-text, constructed-response items. 

Based on quadratic weighted kappa (QWK), a single independent human rater scoring scenario 
produced slightly higher quality scores than the human-human inter-rater agreement levels, with a 
QWK around 0.77. The two single-read scenarios using Automated Scoring systems produced higher 
quality scores with an average QWK of about 0.80, and moreover, resulted in much fewer flags on 
average. 

Using an Automated Scoring system to read-behind a human rater with non-exact adjudication 
increased score quality substantially resulting in an average QWK of about 0.92. Using the second-
best Automated Scoring system instead of the top-performing Automated Scoring system resulted in 
slightly more subgroup flags. Using both Automated Scoring systems to read behind a single human 
rater produced the highest quality scores with an average QWK of 0.94.  

When only non-adjacent scores were adjudicated, there was no improvement in score quality. An 
explanation is that very few if any scores assigned by read-behind Automated Scoring systems were 
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actually non-adjacent. 

Using an Automated Scoring system as a read-behind for another Automated Scoring system did 
result in an improvement in score quality. However, an Automated Scoring system reading behind a 
human rater produced better scores. 

Table 4.4. Average Rater Agreement Statistics, ELA/literacy—Short-text Items 
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Human-Human 0.00 0.76 0.76 79 99 0.43 0.29 0.00 0.14 

1 0.00 0.78 0.79 80 100 4.86 0.86 0.00 4.00 

2 -0.01 0.81 0.81 83 100 0.29 0.00 0.00 0.29 

3 0.00 0.80 0.80 82 99 0.29 0.00 0.00 0.29 

4 -0.01 0.93 0.93 93 100 0.00 0.00 0.00 0.00 

5 0.00 0.78 0.80 81 100 4.86 0.86 0.00 4.00 

6 -0.01 0.92 0.92 93 100 0.14 0.00 0.00 0.14 

7 0.01 0.78 0.80 81 100 4.71 0.71 0.00 4.00 

8 -0.01 0.87 0.87 88 100 0.00 0.00 0.00 0.00 

9 -0.01 0.81 0.81 83 100 0.29 0.00 0.00 0.29 

10 0.00 0.80 0.80 82 99 0.43 0.00 0.00 0.43 

11 -0.01 0.94 0.94 95 100 0.00 0.00 0.00 0.00 
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Mathematics short-text, constructed-response items. 

The pattern for the seven mathematics short-text, constructed-response, items was similar to the 
pattern for the ELA/literacy short-text, constructed-response, items.  

Table 4.5. Average Rater Agreement Statistics, Mathematics—Short-text Items 
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Human-Human 0.00 0.89 0.89 91 100 0.00 0.00 0.00 0.00 

1 0.01 0.88 0.89 87 100 3.29 0.43 0.00 2.86 

2 0.00 0.92 0.92 93 100 0.00 0.00 0.00 0.00 

3 -0.01 0.90 0.90 92 100 0.14 0.00 0.00 0.14 

4 0.00 0.97 0.97 98 100 0.00 0.00 0.00 0.00 

5 0.02 0.88 0.90 88 100 3.29 0.43 0.00 2.86 

6 0.00 0.97 0.97 97 100 0.00 0.00 0.00 0.00 

7 0.02 0.88 0.90 88 100 3.29 0.43 0.00 2.86 

8 -0.01 0.94 0.94 95 100 0.00 0.00 0.00 0.00 

9 0.00 0.92 0.92 93 100 0.00 0.00 0.00 0.00 

10 -0.01 0.90 0.90 92 100 0.14 0.00 0.00 0.14 

11 0.00 0.98 0.98 99 100 0.00 0.00 0.00 0.00 

 

Here, a single independent human rater scenario produced scores with an average QWK of 0.88, 
slightly lower than but still comparable to human-human inter-rater agreement. The two Automated 
Scoring systems produced scores with a slightly higher average QWK of about 0.90. Using an 
Automated Scoring system as a read-behind improves score quality considerably with an average 
QWK of about 0.97, provided non-exact adjudication is used. When only non-adjacent scores are 
adjudicated, the improvements in score quality are minimal if any. As for the ELA/literacy items, an 
Automated Scoring system reading behind an independent human rater produced scores with a 
higher quality QWK than when an Automated Scoring system reads behind another system. 
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ELA essay items. 

For the ELA/literacy items, the pattern for the read-behind scenarios resembles that for the previous 
two item types, but the single-read scenarios are different. For all three traits, these scoring 
scenarios produce scores with average QWKs below human-human inter-rater agreement. 

Table 4.6. Average Rater Agreement Statistics, Essay—Trait A  
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A Human-Human 0.01 0.86 0.86 79 99 0.00 0.00 0.00 0.00 

A 1 -0.01 0.81 0.82 73 98 2.86 0.57 0.00 2.29 

A 2 0.00 0.83 0.83 77 99 0.43 0.29 0.00 0.14 

A 3 0.02 0.83 0.83 77 99 1.00 0.29 0.43 0.29 

A 4 -0.01 0.92 0.92 88 100 0.00 0.00 0.00 0.00 

A 5 -0.01 0.83 0.84 73 99 2.71 0.57 0.00 2.14 

A 6 0.00 0.93 0.93 89 100 0.00 0.00 0.00 0.00 

A 7 0.00 0.83 0.84 74 99 2.57 0.57 0.00 2.00 

A 8 0.02 0.90 0.90 87 99 0.29 0.00 0.00 0.29 

A 9 0.00 0.84 0.84 78 99 0.57 0.29 0.00 0.29 

A 10 0.02 0.84 0.84 77 99 0.57 0.29 0.00 0.29 

A 11 0.00 0.95 0.95 92 100 0.00 0.00 0.00 0.00 
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Table 4.7. Average Rater Agreement Statistics, Essay—Trait B 
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B Human-Human 0.02 0.85 0.85 78 99 0.14 0.00 0.00 0.14 

B 1 0.03 0.81 0.81 72 98 2.71 0.57 0.00 2.14 

B 2 0.02 0.85 0.85 78 99 0.14 0.00 0.00 0.14 

B 3 0.02 0.83 0.83 76 99 0.86 0.29 0.29 0.29 

B 4 0.01 0.92 0.93 89 100 0.00 0.00 0.00 0.00 

B 5 0.03 0.82 0.83 74 99 2.57 0.57 0.00 2.00 

B 6 0.01 0.92 0.92 89 100 0.00 0.00 0.00 0.00 

B 7 0.03 0.83 0.84 74 99 2.57 0.57 0.00 2.00 

B 8 0.01 0.90 0.90 86 100 0.00 0.00 0.00 0.00 

B 9 0.02 0.85 0.85 79 99 0.14 0.00 0.00 0.14 

B 10 0.02 0.83 0.83 76 99 0.57 0.29 0.00 0.29 

B 11 0.01 0.94 0.94 92 100 0.00 0.00 0.00 0.00 
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Table 4.8. Average Rater Agreement Statistics, Essay—Trait B  
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C Human-Human 0.04 0.73 0.73 72 98 1.57 1.14 0.00 0.43 

C 1 -0.09 0.65 0.67 65 96 4.57 1.86 0.00 2.71 

C 2 0.00 0.73 0.73 74 98 0.43 0.29 0.00 0.14 

C 3 0.01 0.68 0.68 70 97 2.57 0.86 0.57 1.14 

C 4 -0.02 0.89 0.89 88 99 0.14 0.00 0.00 0.14 

C 5 -0.09 0.69 0.71 67 98 3.57 1.00 0.00 2.57 

C 6 -0.02 0.88 0.89 88 99 0.14 0.00 0.00 0.14 

C 7 -0.09 0.70 0.72 68 98 4.14 1.29 0.00 2.86 

C 8 0.00 0.84 0.84 84 99 0.14 0.00 0.00 0.14 

C 9 0.00 0.74 0.74 74 98 0.43 0.29 0.00 0.14 

C 10 -0.01 0.71 0.71 71 98 2.43 1.00 0.00 1.43 

C 11 -0.01 0.93 0.93 92 99 0.00 0.00 0.00 0.00 
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Adjudication Rates. Table 4.B.1 in Appendix 4.B presents adjudication rates by item for the eight 
scenarios involving more than a single rater. Table 4.9 presents average adjudication rate for each 
of these scenarios for ELA short-text, constructed-response, items; mathematics short-text, 
constructed-response, items; and ELA essay item by trait.  

Table 4.9. Average Percentage of Adjudication 

Average Percentage of Adjudication 

Content Trait S4 S5 S6 S7 S8 S9 S10 S11 

ELA   22.2 0.6 23.1 1.0 10.5 0.1 0.1 27.6 

MA   15.1 0.3 15.8 0.3 5.6 0.0 0.0 18.2 

Essay A 25.7 1.7 26.6 1.4 18.1 0.8 0.8 34.7 

Essay B 25.6 1.1 27.3 1.7 17.1 0.1 0.1 34.4 

Essay C 34.8 3.3 36.4 4.3 22.4 1.6 1.6 45.2 

 

Similar to the Pilot Study, average adjudication rates in non-adjacent adjudication scenarios are low 
(maximum 4.3 percent). As expected, scoring scenarios with non-exact adjudication had higher 
adjudication rates, ranging from 5.6 percent (two Automated Scoring systems for mathematics short-
text, constructed-response, items) to 36.4 percent (second-best Automated Scoring system reading 
behind a human rater).  

Adjudication rates are higher when an Automated Scoring system reads behind a human rater than 
when an Automated Scoring system reads behind another Automated Scoring system. Using the 
second-best Automated Scoring system increased adjudication rates slightly. The scoring scenario 
with three raters had the highest adjudication rates, with over 45 percent of responses adjudicated 
for essay items, trait C. 

Adjudication rates were lowest for the mathematics short-text, constructed-response, items, followed 
by ELA/literacy short-text, constructed-response, items. Essay items, traits A and B, had slightly 
higher adjudication rates. A possible explanation may be the number of score points. Essay items, 
trait C, does not follow this pattern, as it had the highest adjudication rates. This may be connected 
to the generally lower agreement rates for this trait. 

Discussion 

Bennett (2011) and Zhang (2013) have suggested using Automated Scoring in combination with 
human scoring in different read and read-behind scenarios. These scenarios offer potentially higher 
score quality at lower costs for large-scale assessment programs. To help inform assessment 
programs that are considering using Automated Scoring systems in combination with human raters, 
many different scoring scenarios were investigated in the Pilot Study and the Field Test. 

The finding of the present studies can be summarized as follows: 

• In the Pilot Study, a single human rater scenario resulted in scores with average QWK much 



Chapter 4: 
Continued Read-Behind Studies 

 
 

52 
Copyright © 2014 by Smarter Balanced Assessment Consortium 

higher than human-human inter-rater agreement. However, the ratings from that scenario 
were not produced independently. In the Field Test, independent ratings were collected, and 
average QWK for a single human rater scenario was around or below inter-rater agreement 
levels.  

• As was the case in the Pilot Study, an Automated Scoring system reading behind a single 
human rater resulted in a substantial improvement in score quality (as measured by average 
QWK). The difference between using the second-best Automated Scoring system, as opposed 
to the top-performing system, was minimal. 

• An Automated Scoring system reading behind another Automated Scoring system did not 
improve score quality by much. Note, however, that the systems were not explicitly trained for 
a read-behind scenario. It could be that improvements can be made if a system is designed 
for read-behind use. 

• Only adjudicating non-adjacent scores did not increase score quality over single-read scoring 
scenarios. Thus, pragmatically the choice may be between either a single read scenario or a 
second-read scoring scenario with non-exact adjudication. 
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Chapter 5: Targeting Responses for Human Review 
Automated Scoring systems are designed to predict the score that a human rater would assign to a 
given response based on the associated rubric. One of the challenges associated with the 
application of these systems to high-stakes testing is that automated scores will deviate from human 
scores for some responses. Although metrics to evaluate Automated Scoring systems describe 
overall scoring consistency compared to humans, such indexes do not identify which responses are 
likely to receive scores that are discrepant with human scores. In a scenario where most responses 
are scored by a single Automated Scoring system only, it is important to identify which responses are 
aberrant to the extent that their automated score is likely to be different from the score a human 
would have given. In such situations, flagged responses should be routed to humans for scoring.  

Hastie, Tibshirani, and Friedman (2009, Equation 7.9, p. 223) provide a decomposition of the 
expected prediction error of a regression model that is insightful in discussing the reasons why 
Automated Scoring systems may provide a predicted score that is discrepant from a human score. In 
a regression model, it is assumed that the output Y (i.e., the human score) is a function of the input 
variables X (i.e., response features), plus a random error term ε with an expected value of zero,
( ) 0E ε = Using squared-error loss, the expected prediction error at input  

x0, ( )0Err x , decomposes as a sum of three terms, 

 

( ) ( )( ) ( ) ( ) ( )( )2 2
2 ˆ ˆ ˆ

0 0 0 0 0Err x E f x f x E f x E f xεσ
    = + − + −     

,   (1) 

 

where ( ) 2Var εε σ=  and ( )ˆ
0f x  is the estimator of ( )0f x . 

 

The first term, 2
εσ , is irreducible error; it cannot be avoided regardless of how well the Automated 

Scoring system is trained. The second term is the squared bias, and the third term is the variance. In 
this study, it is assumed that Automated Scoring systems are sufficiently flexible and that they were 
trained on a sizeable training sample, and therefore the squared bias and variance are low overall. 
We can then distinguish between the following two reasons for a high discrepancy between human 
and automated scores: 

1. The prediction error is large due to a high amount of irreducible error. A related situation 
is where the true mean is not a smooth function of the features in certain regions of the 
feature space, so that there is always a large interpolation error, even when the data are 
not sparse in that region. 

2. There are regions in the feature space with only few training examples (sparse regions). 
Predicted scores in those regions are based on extrapolation from regions in the feature 
space that are more densely populated or on interpolation based on a few cases only. An 
Automated Scoring system is likely to suffer from high bias or variance in these regions, 
resulting in a large prediction error.  
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Three different studies approaches were investigated in the Pilot Study. The first approach 
addressed irreducible error by modeling the agreement between human and automated scores as a 
function of the input variables that constitute the feature space. This is analogous to the analysis of 
residuals in linear regression. The second approach focused on the identification of (observations in) 
sparse regions of the feature space using outlier detection methods, and whether the degree to 
which a response is atypical in terms of features is related to the amount of discrepancy between 
human and automated scores. The third approach applied to Automated Scoring systems employ 
several models in a first stage and treat the scores that result from each of these models as input 
variables in a second stage. We investigated whether large discrepancies between automated scores 
obtained in the first stage were predictive for discrepancies between automated and human scores. 
Among the three approaches, the identification of responses in sparse regions of the feature space 
using outlier detection methods was the most promising. Therefore, this is the approach that is 
further investigated in the Field Test study. 

Purpose 

The first goal of this study is to replicate and fine tune the outlier detection method that was 
established for the Pilot Study. The number of items considered in this study is more than four times 
the number of items considered in the previous study. In addition, cross-validation techniques will be 
used to select optimal choices for settings that were selected in an ad hoc manner before.  

Second, we will assess the practical significance of the method by comparing two scenarios for 
routing a subset of automated scores for a second human read. In the first scenario, responses that 
are flagged by the outlier detection method will be routed for human review (targeted routing), 
whereas in the second scenario, the same proportion of scores will be routed for human review, but 
these responses will be randomly selected (random routing). The random routing scenario is a 
baseline scenario against which the targeted routing will be compared. We will look at both the 
proportion of routed scores that needed adjudication, and the agreement statistics between the final 
score for each scenario and the official score of record.  

Methodology 

Data Source 

We used the 63 Case 2 items that were scored by multiple Automated Scoring systems (see Chapter 
1). In particular, there were 21 English language arts (ELA)/literacy short-text, constructed-response 
items, 21 mathematics short-text, constructed-response, items, and 21 essay items. For the essay 
items, the scores on all three traits (A: Organization/Purpose; B: Evidence/Elaboration; C: 
Conventions) were considered. The characteristics of the items are discussed in Chapter 1 and in 
Table 1.1.  

Whether or not a response lies in a sparse region of the feature space (an outlier) obviously depends 
on the feature space that is specific to the Automated Scoring system. For the essays, we used the 
features that were extracted by the Vendor 1 engine. For the ELA/literacy and mathematics items, 
we used the features that were extracted by Vendor 6. 

For this study, all responses that received a condition code as the score of record were excluded. In 
addition, the Vendor 1 engine, but not the Vendor 6 engine, was able to predict a condition code. 
Responses for which the Vendor 1 engine produced a condition code were excluded as well.  
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Procedures 

In the first part of the study, we by-and-large employed the method developed for the Pilot Study and 
scaled the method to deal with a larger number of items. The method consisted of several stages. 
First, a principal component analysis was carried out to reduce the dimensionality of the feature 
space. In the next step, a partitioning around means analysis was carried out on the principal 
component scores of the training set. Partitioning around medoids is a statistical technique similar to 
k-means clustering , but it is more robust than k-means clustering in the presence of outliers (see 
Husson, Josse, & Pagès, 2010, for a discussion).  

For the Vendor 1 Automated Scoring system, all features were numerical variables. The means and 
standard deviations varied considerably across features but this variation was at least partially due 
to differences in scales (i.e., features included frequencies as well as ratios). Therefore, all variables 
were standardized prior to the principal component analysis. In contrast, all features were binary and 
reflected presence or absence for the Vendor 6 Automated Scoring system. Because the same scale 
with the same meaning was in place in this case, the feature variables were not standardized prior to 
the principal component analysis. The principal component solution obtained from the training data 
was used to generate principal component scores for both the training and the validation sets. 

For the Field Test items, the optimal number of principal components and the optimal number of 
clusters was determined using 5-fold cross-validation. The number of principal components was 
varied from 15 to 25, and the number of clusters from 2 to 5, resulting in 44 possible combinations. 
For each combination, the cross-validated polyserial correlation was computed between the 
Euclidean distance of the responses to the closest cluster medoid and the absolute value of the 
difference between human and automated scores. The polyserial correlation is a measure of 
association between an ordered categorical and a continuous variable (i.e., the absolute value of the 
difference between human and automated scores, and the distance to the closest cluster medoid, 
respectively). We opted for the polyserial correlation in order to select the number of principal 
components and clusters that maximized the relation between the degree of atypicality of a 
response and discrepancies between human raters and automated scoring systems. Note that for 
the essay items, even though the feature space is the same across the three traits, the number of 
principal components and clusters that optimizes the cross-validated polyserial correlation can still 
be different. Therefore, the number of principal components and the number of clusters was 
determined separately for each of the three traits.  

Once the number of principal components and the number of clusters was determined, one more 
partitioning around means was carried out on the entire training set. This final partitioning of the 
training data was used to compute the Euclidean distances between the responses of the validation 
set and each of the cluster medoids  

In the second part of the study, two routing scenarios were compared. In the first scenario, the  
(100-y) % responses of the validation set for which the distance to the closest medoid was larger 
than percentile y were routed for human review. The official score of record was used for the human 
score. In case of non-exact agreement, the score was adjudicated by taking the official score of 
record as the final score. This scenario was carried out for a range of percentiles, and for each value 
the quadratic weighted kappa was computed between the human scores and the (possibly 
adjudicated) automated scores. This scenario was compared against a baseline scenario where 
(100-y) % of the validation responses were selected at random and routed for human review. 
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Results 

Table 5.1 presents the descriptive statistics for the selected number of principal components and 
number of clusters for each of the three item types. For the ELA/literacy items (Vendor 6), the 
selected number of principal components ranged from 15 to 25, with a mean of 21.04, a median of 
22, and a standard deviation of 3.77. For the mathematics items (Vendor 6), the selected number of 
principal components ranged from 15 to 25 with a mean of 19.38, a median of 18, and a standard 
deviation of 3.93. Finally, for the essays (Vendor 1), the selected number of principal components 
ranged from 15 to 25, with a mean of 21.34, a median of 22, and a standard deviation of 3.34. 

The selected number of principal components and clusters for individual items are presented in 
Appendix 5.A.  

Table 5.1. Descriptive Statistics of Principal Components and Clusters  

Content 

Mean Median Standard Deviation Range 

Principle 
Components Clusters Principle 

Components Clusters Principle 
Components Clusters Principle 

Components Clusters 

ELA  21.05 3.76 22 4 3.77 1.14 10 3 

MA  19.38 3.00 18 3 3.93 1.18 10 3 

Essay 21.35 3.11 22 3 3.34 1.21 10 3 

 

The degree of success of identifying which responses are likely to receive scores that are discrepant 
with human scores depends on the association between the distance to the closest cluster medoid 
and the absolute difference between human and automated scores. Figures 5.1 to 5.5 summarize 
this association computed on the validation set for each of the three item types. Each panel presents 
the average distance to the closest cluster medoid for each value of the absolute difference between 
human and automated scores. For the essay items, the maximal possible absolute difference 
between human and automated score amounted to three for the traits Organization/Purpose (trait A) 
and Evidence/Elaboration (trait B). Because an absolute differences of three was rarely observed, 
absolute differences of two and three were collapsed into a single category for these traits. The 
mathematics items were scored on a scale of 0–2, and therefore the maximum absolute difference 
amounted to 2. The average distances were computed separately for each item on the responses of 
the validation set, and then further averaged across the 21 items of the same item type. For the 
essay items, the averages were computed separately for each of the three traits. Each panel also 
presents the polyserial correlation(s), averaged over the 21 items of a given type. For each item type, 
very commonly, the average distance to the closest cluster medoid increased with an increasing 
discrepancy between human and automated scores. The results for individual items are presented in 
Appendix 5.B (discrepancy) and 5.C (polyserial correlations). 
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Figure 5.1. Discrepancy vs Average distance—ELA/literacy 
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Figure 5.2. Discrepancy vs Average distance—Mathematics 
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Figure 5.3. Discrepancy vs Average distance—Essay, Trait A 
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Figure 5.4. Discrepancy vs Average distance—Essay, Trait B 
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Figure 5.5. Discrepancy vs Average distance—Essay, Trait C 
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Figures 5.6 through 5.8 summarize the results for the random and targeted routing scenarios. Again, 
we present the average results for each item type. Each of the figures presents the increase in 
average quadratic weighted kappa as a function of the proportion of responses that were routed for 
human review. Because the automated scores were adjudicated whenever there was non-exact 
agreement between human and automated scores, all quadratic weighted kappas asymptote to the 
value of 1 as the proportion of routed responses approach 1. The averages are computed over the 
21 items within each item type. The results for individual items are presented in Appendix 5.D 
through Appendix 5.F. For all item types (and traits), the curves for the targeted routing dominate the 
curves for random routing, indicating that for any given proportion of routing automated scores for a 
human review, more discrepant scores were resolved under the scenario of targeted routing. For 
example, at 20% of the data sent for human review, the targeted routing performs 5% better than 
random routing for ELA/literacy, performs 4.2% better than random routing for mathematics, and  
5.1% better than random routing for essay items measured across quadratic weighted kappa. 
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Figure 5.6. Comparison of Average Performance of Random vs Targeted Routing—ELA/literacy Short-text 
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Figure 5.7. Comparison of Average Performance of Random vs Targeted Routing—Mathematics Short-text 
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Figure 5.8. Comparison of Average Performance of Random vs Targeted Routing—ELA/literacy Essay 

 

 
 

 

  



Chapter 5: 
Targeting Responses for 

Human Review 
 

66 
Copyright © 2014 by Smarter Balanced Assessment Consortium 

Discussion 

In this study, we investigated whether it is possible to identify responses that are likely to be scored 
differently by Automated Scoring systems and humans. In a previous study, three methods were 
investigated. The most successful method was an outlier detection method to identify responses that 
were located in sparse regions of the feature space. The method consists of a principal component 
analysis followed by a partitioning around medoids analysis. The purpose of the principal component 
analysis is to reduce the dimensionality of the feature space. The partitioning around medoids 
identifies prototypical responses within the reduced feature space. Responses in sparse regions of 
the feature space are identified as responses with a relatively large distance to the closest 
prototypical response. In this study, we further developed this method. 

In the previous study, both the number of principal components and the number of clusters were 
determined ad hoc. In this study, we successfully used cross-validation to determine these 
parameters. The method was validated on more than 60 items from three different item types and 
scored by two different vendors of Automated Scoring systems. The method was generally successful 
across item types and vendors. 

Finally, we investigated the practical significance of our proposed method of flagging automatically 
scored responses for human review. Two scenarios were compared: a scenario where responses 
were routed based on the atypicality of those responses, and a scenario where responses were 
routed at random. Across item types and vendors, substantially fewer responses needed to be 
routed under the targeted routing scenario than under the random routing scenario to obtain a 
similar gain in agreement between the automated and human scores. 
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Chapter 6: Item Characteristics that Correlate with Agreement for Handscoring and 
Automated Scoring 

In the Smarter Balanced Pilot Study, Toward Predicting Whether a Short-Text Constructed-Response 
Item Can Be Scored Using Automated Scoring Engines, we found that there are characteristics of 
items correlated with the quadratic weighted kappas of both human-human agreement and engine-
human agreement for English language arts (ELA)/literacy items. We saw similar trends for 
mathematics items, but the results were not statistically significant, possibly because there were too 
few mathematics items (see also Leacock, Messineo, & Zhang, 2013). 

The item characteristics were derived from (1) the language of the prompt, (2) the item metadata, 
and (3) the scoring rubrics. That is, the characteristics can be identified before items are 
administered. In the research done during the Pilot Study, we began with the hypothesis, based on 
findings in Leacock et al. (2013), that human agreement would be affected by having a large number 
of relevant text-based examples to draw from in the reading passage (for Reading Comprehension 
items). As expected, when there are many possible text-based examples in ELA/literacy items, 
human-human and engine-human agreement both dropped. 

Otherwise, the assumption that none of the variables would correlate with low human agreement 
was not confirmed. For ELA/literacy Depth of Knowledge (DOK), human-human and engine-human 
agreement was statistically significantly lower for DOK 3. Although statistical significance could not 
be tested for mathematics, there was a trend of greater disagreement for DOK 3. In the Pilot Study, 
there were no short-text items with DOK 4. 

None of the other variables had statistically significant results for human-human and engine-human 
agreement but, again, there seem to be some trends. For both ELA/literacy and mathematics, 
agreement for Predicted Difficulty fell on the items that were predicted to be Hard. Similarly, there 
was lower agreement when the rubrics contained holistic language and involved clear inferences. 

Purpose 

The goal of this research study is to determine whether we can learn to predict, in advance of 
scoring, whether short-text, constructed-response, items can be scored using Automated Scoring 
systems. More specifically, this study has the following objectives: 

1. Study the new ELA/literacy items that were developed for the Field Test: Reading 
Comprehension (Claim 1), Brief Writes (Claim 2), and Performance Task Research (Claim 
4), Within each claim, we also look at the Targets and Writing Purposes (or writing genre) 
of the stimuli. 

2. Include a larger number of mathematics items with the aim of getting statistical 
significance in the analyses. 

There are many differences between the Pilot Study and Field Test items. As such, we have updated 
and redefined many of the item characteristics and are focusing on those characteristics that can be 
found in the metadata.  
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Methodology 

Data Source 

The data set was comprised of responses to the 657 ELA/literacy and 233 mathematics short-text 
constructed response Field Test items that were selected for the Automated Scoring Special Studies. 
The numbers in the parentheses indicate the number of items in the training data.  

ELA/literacy:  

1. Grade Level: 

• Elementary: grades 3, 4, 5 (231) 

• Middle: grades 6, 7, 8 (217) 

• High: grade 11 (217) 

2. There were three Smarter Balanced ELA/literacy Depth of Knowledge (DOK) levels. 
(There were no DOK 1 items among the Field Test items selected for the Automated 
Scoring studies. Since there were only eight DOK 2 items, they were not included in the 
study.): 

• DOK 3: Strategic Thinking (502) 

• DOK 4: Extended Thinking (155) 

3. Predicted Difficulty: 

• Quintile 1 and 2—very easy and easy (126) 

• Quintile 3—medium (300) 

• Quintile 4 and 5—hard and very hard (239) 

4. The Smarter Balanced Claims (there were no Claim 3—Speaking and Listening items in 
the short-response items): 

• Claim 1: Reading Comprehension: Read analytically—students can read closely 
and analytically to comprehend a range of increasingly complex literary and 
informational texts (258). The subtasks of summarizing/determining a central 
idea and inference/explanation will be studied separately. 

• Claim 2: Brief Writes: Write effectively—students can produce effective and well-
grounded writing for a range of purposes and audiences. Students are asked to 
write introductions, conclusions, or are asked to elaborate text (210). 

• Claim 4: Source-based Performance Tasks—Conduct research—students can 
engage in research/inquiry to investigate topics and to analyze, integrate, and 
present information. Students are asked to do some research across texts and 
explain their answers using examples from multiple sources (197). 
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Claim 1 and Claim 2 used generic rubrics such that a single rubric could be used to score 
many different items. On the other hand, Claim 4 uses item-specific rubrics. Thus we 
characterize ELA/literacy Claim 1 and Claim 2 items as ELA-generic-rubric and Claim 4 as 
ELA-item-specific. 

For the ELA/literacy items, each Claim was associated with a set of Targets and a set of Writing 
Purposes (genres). 

The Targets for Claim 1 (Reading Comprehension) are: 

• Targets 2&9: Students are asked to either summarize a story, or in most cases asks 
them to determine a central idea and explain using details from text (114). 

• Targets 4&11: Asks for an inference or an explanation of the inference using evidence 
from the text (144). 

The Writing Purposes for Claim 1 are: 

• Informational (103) 

• Literary (155) 

The Targets for Claim 2 (Brief Writes) are: 

• Elaboration (96) 

• Organization-Conclusion (54) 

• Organization-Introduction (60) 

The Writing Purposes for Claim 2 are: 

• Informational/Explanatory (63) 

• Narrative (76) 

• Opinion/Argumentative (71) 

The Targets for Claim 4 (Performance Tasks) are: 

• 2. Interpret and Integrate Information (92) 

• 3. Evaluate Information/Sources (43)  

• 4. Use Evidence (62) 

The Writing Purposes for Claim 4 are: 

• Informational/Explanatory (91) 

• Narrative (42) 

• Opinion/Argumentative (64) 
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Mathematics: What follows are the item characteristics that were extracted automatically from the 
metadata for the mathematics short-text items (233). 

1. Grade Level: 

• Elementary: grades 3, 4, 5 (111) 

• Middle: grades 6, 7, 8 (49) 

• High: grade 11 (72) 

2. Score point range: 

• 1 (50) 

• 2 (155) 

• 3 (27) 

3. There are four Common Core State Standards (CCSS) mathematics Depth of Knowledge 
(DOK) levels. DOK 1 (Recall) was not in the items selected for the Special Studies and 
DOK 4 (Extended Thinking) only had four items, so they were not included in the study. 

• DOK 2: Basic Application (48) 

• DOK 3: Strategic Thinking (181) 

4. Predicted Difficulty, as predicted by the item writer: 

• Quintile 1 and 2—very easy and easy (41) 

• Quintile 3 (77) —medium 

• Quintile 4 and 5 (115) —hard and very hard 

5. The Smarter Balanced Claim has four values. There were no Claim 1 items that were 
selected for the Special Studies and only eight Claim 2 (Problem Solving), so they were 
not included in the study. 

• Claim 3: Communicating reasoning—students can clearly and precisely construct 
viable arguments to support their own reasoning and to critique the reasoning of 
others (172). 

• Claim 4: Modeling and data analysis—students can analyze complex, real-world 
scenarios and can construct and use mathematical models to interpret and solve 
problems (53). 

All mathematics items have item-specific (as opposed to generic) rubrics with example 
answers and scoring rules for that item. Thus they were characterized as Math-item-
specific-rubric. 

6. Mathematical Reasoning (MR) item. Smarter Balanced contracted with Illustrative 
Mathematics to develop mathematics items to “push the field forward” in terms of 
finding ways to automatically score constructed responses. Thus they were, in part, 
designed to test the limits of automated scoring. 
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• Yes—a MR item (41) 

• No—not a MR item (192) 

To determine whether any of the characteristics can be used to predict accurate Automated Scoring 
of items, we used the general linear model to conduct an analysis of variance (ANOVA) analysis. For 
each characteristic, we performed the ANOVA test to compare the engine-human quadratic weighted 
kappa (QWK; Cohen, 1960, 1968) mean differences. A significant p-value would lead to the rejection 
of the null hypothesis and would indicate whether engines had more difficulty assigning scores when 
the feature characteristic had a certain classification. This process was repeated for human-human 
agreement. 

Automated Scoring Engines 

Five automated scoring vendors were used for this study. All used the same basic approach to 
Automated Scoring which is called a “bag of words” approach. First, they transformed the words and 
textually-based statistics into features and used them to generate prediction models using many 
machine learning methods, such as random forests, support vector machines, etc. The predicted 
scores of each method were subsequently treated as higher-order features that were combined in a 
second prediction model.  

All of the Automated Scoring engines did some kind of preprocessing of the student responses 
including, but not limited to: 

1. Spelling error correction. Unlike essays, where spelling and grammar are an integral part 
of the score, with short-text items, raters are typically instructed to look exclusively for 
content. When a word is misspelled, if a rater understands what the intended word is and 
that word contributes to a correct concept, then the response should receive the same 
score as it would if the word was not misspelled. Humans are extremely good at 
recognizing the intended word when a word is misspelled, especially within the context of 
a sentence or paragraph. People are so good at this that they often are not even aware of 
the presence of a spelling error. However, computers do not have this talent. When an 
Automated Scoring system encounters a misspelling, it treats it like a new word—that is, 
a computer treats their and thier as two completely unrelated words. 

2. Word normalization—conversion of all alphabetic characters to either uppercase or 
lowercase.  

3. Words were often converted to their base forms to reduce the total number of words 
being analyzed (for example, run, ran, and running were all represented as run). A similar 
technique that some systems use is stemming, which is cruder than morphological 
analysis and simply removes common suffixes. With stemming, run and running would 
be represented differently from ran. 

For more detailed descriptions of the Automated Scoring systems and their preprocessing steps, see 
Chapter 3. 

The short-text items were scored by five different vendors. Vendor 3 scored all 898 short-text 
constructed response items. Vendor 8 scored all of the 41 Mathematical Reasoning items. Vendor 2, 
Vendor 6, and Vendor 9 scored the same random sample of 21 ELA/literacy items and 21 
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mathematics items. In the Results section we report only the best score for each item. 

Procedures 

Agreement between the two human raters and between the resolved human score and the scoring 
engines was measured with QWK. 

To determine whether the characteristics can be useful as a predictor of accurate Automated 
Scoring of items, we conducted an ANOVA analysis. For each characteristic, we performed the ANOVA 
test to compare the engine-human QWK mean differences. A significant p-value would lead to the 
rejection of the null hypothesis, and would indicate whether engines had more difficulty assigning 
scores when the feature contained a certain classification. 

To determine whether any of the item characteristics could be used to predict accurate human 
scoring of items, we conducted an ANOVA. For each characteristic, we performed the ANOVA to 
compare the human-human QWK mean differences. A significant p-value would indicate whether a 
human had more difficulty assigning scores when the feature contained a certain classification. 

For each ELA/literacy claim, to determine whether the characteristics could be used to predict 
accurate human and/or machine scoring of items, we conducted three multiple group t-tests on the 
Claim’s Targets and three multiple group t-tests on the Claim’s Writing Purposes. 

In earlier experiments (Leacock, Messineo & Zhang, 2013 and Leacock & Zhang, 2014) our 
assumption was that human reliability will hold across the characteristics while the engine may not. 
However, in those experiments we found that engine-human and human-human agreement both 
tend to correlate with the same item characteristics. 

The level of significance was established through a post-hoc comparison using the Tukey HSD 
(honestly significance difference) to achieve an overall level of significance. 

Results 

Automated Scoring and handscoring had statistically significant mean QWKs (p<0.001) for each 
content area— but in different directions. For ELA/literacy, the best Automated Scoring engines had a 
mean QWK of 0.73 compared to 0.70 for handscoring. For mathematics, handscoring had higher 
agreement— 0.85 mean QWK compared to Automated Scoring’s 0.81 mean QWK. 

English language arts/literacy 

Overall, human and automated scoring showed similar behaviors. Table 6.1 shows the factors that 
have statistically significant effects for the ELA/literacy items. Both find it easier to score Claim 4 
(Performance Task items) than Claim 1 (Reading Comprehension) and Claim 2 (Brief Writes). The 
best automated engines have an easier time scoring high school responses than they do elementary 
and middle school responses. Handscoring has a harder time with DOK 3 than DOK 4. Neither 
showed any effects for Predicted Difficulty. We did not test the number of score points because all of 
the ELA/literacy items were scored on a 3-point scale. 
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Table 6.1. ANOVA Results for ELA/literacy 

Engine-Human Human-Human 

Factor Value Direction Factor Value Direction 

   DOK 
DOK 4 Easier 

DOK 3 Harder 

Grade level 

High school Easier 

   Middle School, 
Elementary School Harder 

Claim 

Claim 4 Easier Claim Claim 4 Easier 

Claim 1,  
Claim 2 Harder  

Claim 1,  
Claim 2 Harder 

 

One potential reason for having higher mean QWK, for both Automated Scoring and handscoring, is 
that Claim 4 (research items in Performance Tasks) have item-specific rubrics with examples of 
correct answers, whereas the rubrics for Claims 1 (Reading Comprehension) and 2 (Brief Writes) are 
generic. Although Automated Scoring systems do not understand rubrics in the same way that 
people do, they do make use of the specific language that is used in the rubrics and example 
answers. 

The success with high school responses may be due, in part, to the length of these responses. The 
average length of a high school (11th grade) response is 525 characters (including spaces) while that 
of middle school is 450, and 290 for elementary school. Traditionally, automated scoring of short-
text items is held to be more difficult than scoring essays because short-text items tend to have little 
or no repetition. With essays, an automated system can miss some aspect of the writing in one 
paragraph but has the chance to identify it elsewhere in the essay. With answers that are a sentence 
or two long, if the system misses something, it typically does not get another chance to capture that 
content. 

It is not obvious why humans had a higher agreement on DOK 4 (Extended Thinking) than DOK 3 
(Strategic Thinking). It may be because, as can be seen in Table 6.7, handscoring had somewhat 
higher mean QWKs on items of medium difficulty. Thirty-nine percent of the DOK 3 items were 
predicted to be of medium difficulty as opposed to only 62% in DOK 4. However, the predicted 
difficulty showed no significant differences for either the top engines or handscoring. 

Targets and Writing Purposes within Claims:  

Table 6.2 shows the significant effects for the Targets and Writing Purposes for each Claim. The 
asterisks indicate when the post-hoc test does not show statistically significant differences. For 
Claim 1 (Reading Comprehension), the best Automated Scoring systems had higher agreement when 
the reading stimulus was Literary as opposed to Informational—and handscoring showed a similar 
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trend. Neither showed any affects for the Target—between Central Ideas or Inference. 

For Claim 2 (Brief Writes), both the Writing Purpose and the Target were statistically significant for 
both Automated Scoring and handscoring. For the Automated Scoring best engines, Elaboration was 
easier to score than Organization-Conclusion which, in turn, was easier to score than Organization-
Introduction. Again, length may be an issue here because the average number of characters in an 
Elaboration response is 600 as compared to Conclusion (410) and Introduction (385). For 
handscoring, there was no difference between the two Organization Targets. Both found Brief Writes, 
where the student is adding to a Narrative essay, easier to score than Informational or 
Argumentative essays. 

Finally, for Claim 4 (research items in Performance Tasks), people had higher agreement when the 
reading passages were narratives than when the stimuli were informational or gave different sides of 
an argument. The best Automated Scoring systems also showed this as a trend.  
  



Chapter 6: 
Item Characteristics that  

Correlate with Agreement for  
Handscoring and Automated Scoring 

 

75 
Copyright © 2014 by Smarter Balanced Assessment Consortium 

Table 6.2. ANOVA Results for ELA/literacy Targets and Writing Purposes (within Claims) 

Engine-Human Human-Human 

Claim Target/ 
Purpose Value Direction Claim Target/ 

Purpose Value Direction 

Claim 1 Writing 
Purpose 

Literary Easier 
Claim 1*    Informational Harder 

Claim 2 

Target 

Elaboration Easiest 

Claim 2 

Target 

Elaboration Easier 

Organization-
Conclusion Harder Organization-

Conclusion, 
Organization-
Introduction 

Harder 
Organization-
Introduction Hardest 

Writing 
Purpose 

Narrative Easier 

Writing 
Purpose 

Narrative Easier 

Informational- 
Explanatory, 

Opinion- 
Argumentative 

Harder 

Informational- 
Explanatory, 

Opinion- 
Argumentative 

Harder 

Claim 4*    Claim 4 Target 

Evaluate 
Information Easier 

Interpret/ 
Integrate 

Information, 
Use evidence 

Harder 

Note: Post-hoc test does not show statistically significant differences. 

 

Mathematics 

Unlike ELA/literacy items, handscoring agreement was statistically significantly higher than the best 
engine scores for mathematics. There are many potential reasons for why mathematics items were a 
challenge for Automated Scoring systems. Mathematics items tended to elicit a specific complex 
concept or a chain or reasoning that could be expressed in a large number of ways. Another 
characteristic of the Smarter Balanced mathematics items was that the student responses tended to 
be short. The average length of the mathematics items was about 200 characters, as opposed to the 
average ELA/literacy character count of about 500. 

There were no effects, for both humans or engines, on grade level, Depth of Knowledge, and 
Predicted Difficulty. The best engine had higher QWK for Claim 2 (Problem Solving) than for Claim 4 
(Modeling and Data Analysis), but the post-hoc test did not find it statistically significant. 
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Handscoring did not show any effects between the Claims. In addition, handscoring, but not 
Automated Scoring, found it more difficult to score 2-point items. However, it could not be 
determined whether the 4-point items were more similar to the 2- or 3-point items. We were unable 
to test the mathematics Targets because there were so many (seven) of them with extremely skewed 
distributions, ranging from 1 to 89. 

For both humans and engines, the QWK was significantly higher for the items that were not written 
specifically as Mathematical Reasoning (MR) items. However, this does not mean that non-MR items 
are not testing Mathematical Reasoning. As previously mentioned, the MR items were created, in 
part, to test the limits of Automated Scoring.  

Table 6.3. ANOVA Results for Mathematics 

Engine-Human Human-Human 

Factor Value Direction Factor Value Direction 

Claim*      

Score points*   Score points 
3, 4? Easier 

2, 4? Harder 

Mathematical 
Reasoning 

Yes Harder Mathematical 
Reasoning 

Yes Harder 

No Easier No Easier 

Note: Post-hoc test does not show statistically significant differences. 

 

Since all but two of the Mathematical Reasoning items are Target B (Construct, autonomously, 
chains of reasoning that will justify or refute propositions or conjectures), we conducted a final test 
comparing Target B MR and Target B non-MR items. Again, both humans and engines had lower 
QWKs for the MR Items, but not at a statistically significant level. However, engine performance 
dropped much more than human performance: 4% drop in mean QWK for handscoring and 8% for 
the best engine—so there is some evidence that the Mathematical Reasoning items indeed pushed 
the limits of automated scoring. 

Discussion 

Overall, the mean QWK for mathematics items was much higher than for ELA/literacy. Handscoring 
had a mean QWK of 0.85 for mathematics and 0.69 for ELA/literacy while the best engines had a 
mean QWK of 0.81 for mathematics and 0.74 for ELA/literacy.  

One potential explanation is the use of generic rubrics. Leacock, Gonzalez, and Connaroe (2013) 
conducted a study designed to validate assumptions about the requirements for Automated Scoring 
that demonstrates the effect of rubric clarity on score reliability. The investigators replaced holistic 
with specific language in analytic rubrics, exhaustively specified allowable content, and sharpened 
the rules for each score point for a sample of items. Following this revision effort, human-human 
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agreement rates increased from a mean QWK of 0.63 to 0.94 on a set of seven ELA/literacy items 
written to comply with the CCSS. 

The rubrics for Reading Comprehension and for Brief Writes are not only holistic, but they are also 
generic —a single rubric can be used to score hundreds of items. The rubrics for the research 
Performance Tasks are item-specific and include an example answer. We conducted an ANOVA on 
rubric type and found a statistically significant difference (p<.001). The best scoring engines had a 
mean QWK of 0.78 for item-specific rubrics and 0.73 for holistic, generic rubrics. Handscoring had a 
mean QWK of 0.74 for item-specific rubrics and 0.67 for generic rubrics. All of the mathematics 
items also had item-specific rubrics which, again, may help to explain why both human and engine 
agreement is so much higher for mathematics than for ELA/literacy. 

Further analyses needs to be carried out to try to understand why the Writing Purpose showed 
effects for Reading Comprehension and for Brief Writes. For Reading Comprehension, there was 
higher agreement when the text was fictional for Automated Scoring—and handscoring showed a 
similar trend. With Brief Writes, there was also higher agreement for narrative stimuli. 
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Tables 

Table 6.4. ANOVA ELA/literacy and Mathematics 

Factor df 
Engine-Human Human-Human 

F p F p 

Content 1 46.97 < 0.001 412.29 < 0.001 

 

Table 6.5. Mean QWK for Subject Area 

Content N 
Engine-Human Human-Human 

Mean QWK SD Mean QWK SD 

ELA/literacy 657 0.74 0.09 0.69 0.09 

Mathematics 218 0.81 0.18 0.85 0.11 

 

Table 6.6. ANOVA for ELA/literacy Factors 

Factor df 
Engine-Human Human-Human 

F p F p 

Quintile 2 0.00 1.00 0.10 0.90 

DOK 1 0.75 0.39 4.89 0.03 

Grade-level 2 12.17 < 0.001 19.14 < 0.001 

Claim 2 10.80 < 0.001 0.38 0.68 
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Table 6.7. Mean QWK for ELA/literacy factors 

Factor Value N 
Engine-Human Human-Human 

Mean QWK SD Mean QWK SD 

Quintile 

Easy 124 0.73 0.08 0.67 0.09 

Medium 298 0.76 0.10 0.71 0.09 

Hard 235 0.73 0.10 0.67 0.10 

DOK 
3 502 0.74 0.09 0.68 0.10 

4 155 0.77 0.06 0.73 0.08 

Grade-level 

Elementary School 226 0.73 0.11 0.69 0.11 

Middle School 216 0.74 0.08 0.69 0.08 

High School 215 0.77 0.07 0.69 0.08 

Claim 

1 250 0.73 0.10 0.68 0.09 

2 210 0.73 0.09 0.66 0.09 

4 197 0.78 0.07 0.74 0.08 

 

Table 6.8. T-tests for Targets and Writing Purposes within Claims 

Claim Factor df 
Engine-Human Human-Human 

F p F p 

Claim 1 
Target 1 1.16 0.28 2.72 0.14 

Writing Purpose 1 5.87 0.02 4.30 0.04 

Claim 2 
Target Language 2 45.22 < 0.001 6.39 0.00 

Writing Purpose 2 33.70 < 0.001 20.77 < 0.001 

Claim 4 
Target 2 0.76 0.47 3.44 0.03 

Writing Purpose 2 1.19 0.31 0.64 0.53 
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Table 6.9. Mean QWK for Targets and Writing Purpose within Claims 

Claim Target Writing 
Purpose N 

Engine-Human Human-Human 

Mean 
QWK SD Mean 

QWK SD 

1: Reading 
Comprehension 

2&9: Central Idea Informational 38 0.73 0.08 0.65 0.10 

2&9: Central Idea Literary 68 0.75 0.08 0.68 0.10 

4&11: Inference Informational 64 0.71 0.12 0.67 0.09 

4&11: Inference Literary 80 0.74 0.09 0.69 0.09 

2: Brief Writes 

Elaboration Informational/ 
Explanatory 29 0.77 0.07 0.68 0.09 

Elaboration Narrative 37 0.81 0.06 0.72 0.08 

Elaboration Opinion/ 
Argumentative 30 0.74 0.07 0.64 0.08 

Organization– 
Conclusion 

Informational/ 
Explanatory 17 0.67 0.07 0.59 0.10 

Organization–
Conclusion Narrative 20 0.78 0.05 0.71 0.04 

Organization– 
Conclusion 

Opinion/ 
Argumentative 17 0.68 0.03 0.62 0.06 

Organization– 
Introduction 

Informational/ 
Explanatory 17 0.64 0.07 0.59 0.09 

Organization– 
Introduction Narrative 19 0.73 0.06 0.68 0.09 

Organization– 
Introduction 

Opinion/ 
Argumentative 24 0.65 0.06 0.64 0.07 

4: Research 
terms in 

Performance 
Tasks 

2 Informational/ 
Explanatory 46 0.78 0.09 0.74 0.10 

2 Narrative 17 0.79 0.08 0.75 0.08 

2 Opinion/ 
Argumentative 29 0.75 0.06 0.71 0.08 
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Claim Target Writing 
Purpose N 

Engine-Human Human-Human 

Mean 
QWK SD Mean 

QWK SD 

4: Research 
terms in 

Performance 
Tasks 

3 Informational/ 
Explanatory 16 0.78 0.08 0.75 0.09 

3 Narrative 14 0.78 0.05 0.78 0.07 

3 Opinion/ 
Argumentative 13 0.80 0.06 0.79 0.07 

4 Informational/ 
Explanatory 29 0.79 0.05 0.73 0.06 

4 Narrative 11 0.75 0.07 0.73 0.06 

4 Opinion/ 
Argumentative 22 0.76 0.07 0.73 0.06 

 

Table 6.10. ANOVA for Mathematics Factors 

Factor df 
Engine-Human Human-Human 

F p F p 

Quintile 2 2.49 0.09 2.23 0.11 

DOK 1 0.01 0.98 1.07 0.30 

Grade-level 2 2.39 0.09 2.53 0.08 

Claim 1 3.97 0.05 3.49 0.06 

Score Points 2 3.49 0.03 9.87 < 0.001 

Mathematical Reasoning 1 14.64 < 0.001 18.04 < 0.001 
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Table 6.11. Mean QWK for Mathematics Factors 

Factor Value N 
Engine-Human Human-Human 

Mean QWK SD Mean QWK SD 

Quintile 

Easy 35 0.85 0.14 0.86 0.09 

Medium 111 0.79 0.20 0.83 0.13 

Hard 72 0.81 0.15 0.86 0.10 

DOK 
2 40 0.83 0.18 0.85 0.12 

3 178 0.80 0.17 0.85 0.11 

Grade-level 

Elementary School 100 0.82 0.17 0.85 0.12 

Middle School 69 0.78 0.18 0.83 0.13 

High School 49 0.81 0.17 0.86 0.09 

Claim 
3 169 0.81 0.17 0.85 0.11 

4 49 0.78 0.19 0.84 0.12 

Score Points 

1 44 0.76 0.15 0.79 0.12 

2 149 0.82 0.19 0.86 0.11 

3 25 0.79 0.12 0.85 0.08 

Mathematical 
Reasoning 

No 179 0.82 0.17 0.86 0.12 

Yes 39 0.74 0.18 0.81 0.10 
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Table 6.12. ANOVA for Mathematical Reasoning within Target B 

Factor df 
Engine-Human Human-Human 

F p F p 

Mathematical 
Reasoning 1 1.05 0.31 0.20 0.66 

 

Table 6.13. Mean QWK for Mathematical Reasoning within Target B 

Factor Value N 
Engine-Human Human-Human 

Mean SD Mean SD 

Mathematical 
Reasoning 

No 47 0.78 0.21 0.82 0.15 

Yes 39 0.74 0.18 0.81 0.10 

 

Table 6.14. ANOVA for Generic vs Item-specific Rubrics (ELA/literacy) 

Factor df 
Engine-Human Human-Human 

F p F p 

Type of Rubric 1 39.51 < 0.001 90.22 < 0.001 

 

Table 6.15. Mean QWK for ELA/literacy Type of Rubric 

Content N 
Engine-Human Human-Human 

Mean QWK SD Mean QWK SD 

Item-specific Rubric 197 0.78 0.07 0.74 0.08 

Generic Rubric 460 0.73 0.09 0.67 0.09 
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Chapter 7: Generic Scoring Models 
The Smarter Balanced essay-length responses are scored on three traits: 

A. Organization/Purpose 

B. Evidence/Elaboration 

C. Conventions 

Scores for both trait A and trait B are, for the most part, based on the content of the essay. This is 
not the case with trait C. The rubric for trait C covers spelling, capitalization, punctuation, grammar/ 
usage and sentence completeness on a three-point grading scale—without regard to specific content. 
Trait C has grade-level rubrics for grades 3 through 8 and another for high school. For example, 4th 
graders are assessed for the ability to use relative pronouns (who, whose, etc.) while 3rd graders are 
not. 

Statistically-based Automated Scoring systems are data-hungry, and as such require large amounts 
of data for training and validating the scoring models. Since trait C is not prompt-specific, it makes 
sense to experiment with developing a non-prompt-specific generic model for scoring. 

Purpose 

While most Automated Scoring vendors provide generic models for scoring essays, it is generally 
agreed that models trained on individual prompts give more accurate scores. This is because the 
model is sensitive to prompt-specific language, as opposed to genre-specific language (e.g., opinion 
essays or narrative essays). For a trait C model, there is no need to identify specific language—it is 
the form, not the content, of the essay that is being assessed.  

Methodology 

Many of the features required for generating a writing conventions score can be identified by good-
quality spelling and grammar checkers. Other features can be developed based on counts/ratios in 
the training essays. For example, if an 8th grade essay consists entirely of sentences that are two and 
three words long, it is unlikely to be assigned a high trait C score. 

It is well known that grammar checkers do not catch all errors. Most, if not all, grammar checkers are 
designed to favor precision over recall as described in Leacock et al. (2014). That is, they would 
rather miss true errors than flag too many good constructions as being in error. Even so, grammar 
checkers that have accuracy comparable to that of Microsoft Word have been shown to be effective 
in both automated essay scoring and in formative feedback to students (Burstein et al., 2013). 

There are several open-source grammar checkers currently available, the most familiar probably 
being LanguageTool. Since it is likely that their quality is lower than commercially available grammar 
checkers, we evaluated LanguageTool’s accuracy and effectiveness. We also evaluated several 
commercially available grammar checkers and, for the purposes of this study, licensed the one that 
we found to be the most effective in terms of identifying the most errors with the fewest false 
positives (identifying a correct construction as being an error). To give a sense of the difference 
between LanguageTool and the commercial grammar checker that we licensed, on a set of 10 
randomly selected essays at various grade levels, LanguageTool accurately identified 19 errors with 
no false positives while the commercial checker accurately identified 65 errors with five false 
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positives. Since the commercial grammar checker identified so many more errors than 
LanguageTool, we were able to develop five features: grammar/usage errors, white space errors, 
capitalization errors, punctuation errors, and stylistic suggestions. Due to the sparseness of errors 
identified by LanguageTool, we developed a single grammar/usage feature. 

We developed spelling error features using a licensed spell checker. Due to the construction of the 
scoring engine for one of the generic models we developed, we were unable to add unknown words 
to the dictionary. In the second generic model, we were able to add unknown words. The language 
that we added were words that appeared in the reading passages that the spell checker did not 
recognize—primarily people and place names and technical terms. 

Data Source 

The models were built based on 16 Smarter Balanced Field Test essay items—eight 6th grade 
prompts and eight 11th grade prompts. The outcome was evaluated using the quadratic weighted 
kappa (QWK). We compared the results with the trait C scores of humans and of the Smarter 
Balanced Field Test Automated Scoring Vendor 1. 

Procedures 

For each grade (6 and 11), there were eight prompts with approximately 1,500 training responses 
for each prompt. To evaluate the generic scoring models, 56 sets were created by taking all the 
possible combinations of five items out of eight per grade, hence, each training set was comprised of 
the responses for five of the items. The three unseen prompts were tested on each training set using 
the Logistic Regression model or the Random Forest model. The classification and overall 
methodology was similar to the Automated Scoring system. We tested three versions of the features. 

1. Vendor 1: The Vendor 1 feature set: includes LanguageTool and a spell checker where 
words were not added to the dictionary. 

2. Enhanced Vendor 1: The Vendor 1 features set—but replacing LanguageTool with a 
proprietary grammar checker and adding unknown words to the dictionary. 

3. Combined Generic: All of the features in items 1 and 2 above. 

Using the best system, we then ran an additional generic scoring experiment—training on the training 
data and testing on the held-out test sets. 

As a final experiment, we built a single model for each grade, training on the training data from all 
eight prompts and testing on the held out test sets for the eight prompts for each grade.  

Results 

Table 7.1 shows the results for the unseen items only. Of the three feature sets, the combined 
version was always the best. The Enhanced Vendor 1 version increased Vendor 1 Grade 6 results by 
almost 2% and Grade 11 results by a little over 1%. Combining the feature sets improved both 
grades by about 0.05%. The results were stronger for 6th grade than for 11th grade. 
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Table 7.14. Results From Three Feature Sets 

Grade 6 Grade 11 

Item ID 
Vendor 1 
Generic 
Model 

Proprietary 
Generic 
Model 

Combined 
Generic 
Model 

Item ID 
Vendor 1 
Generic 
Model 

Proprietary 
Generic 
Model 

Combined 
Generic 
Model 

56561 0.69 0.70 0.72 54155 0.70 0.71 0.72 

61076 0.77 0.81 0.81 54163 0.67 0.71 0.70 

61462 0.75 0.78 0.78 54223 0.66 0.67 0.67 

61651 0.73 0.75 0.74 54729 0.67 0.70 0.70 

61827 0.72 0.75 0.76 56388 0.68 0.69 0.70 

61969 0.79 0.80 0.81 56396 0.67 0.69 0.69 

61971 0.80 0.81 0.81 56398 0.71 0.72 0.73 

61977 0.78 0.79 0.80 56543 0.66 0.67 0.68 

Average 0.76 0.77 0.78 Average 0.68 0.69 0.70 

 

Table 7.2 shows the difference between the generic models and item-specific models. The results for 
the generic models only include the unseen prompts. There are, of course, no unseen prompts in the 
item-specific models. An unexpected result is that, in all but three prompts, the generic scoring 
model was better than the prompt-specific model. Thus the error and other features found in other 
items can inform the trait C score in unseen prompts.  
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Table 7.15. Comparison of Generic and Item-Specific Models 

Grade 6 Grade 11 

Item ID 

Combined 
Generic 
Model 

(Avg QWK) 

Combined 
Prompt 
Specific 
Model 

(Avg QWK) 

Writing  
Genre Item ID 

Combined 
Generic 
Model 

(Avg QWK) 

Combined 
Prompt 
Specific 
Model  

(Avg QWK) 

Writing  
Genre 

56561 0.72 0.66 Opinion/ 
Argumentative 54155 0.72 0.76 Opinion/ 

Argumentative 

61076 0.81 0.76 Informational/ 
Explanatory 54163 0.70 0.74 Opinion/ 

Argumentative 

61462 0.78 0.78 Informational/ 
Explanatory 54223 0.67 0.66 Opinion/ 

Argumentative 

61651 0.74 0.71 Informational/ 
Explanatory 54729 0.70 0.68 Opinion/ 

Argumentative 

61827 0.76 0.73 Informational/ 
Explanatory 56388 0.70 0.67 Informational/ 

Explanatory 

61969 0.81 0.79 Narrative 56396 0.69 0.69 Opinion/ 
Argumentative 

61971 0.81 0.82 Narrative 56398 0.73 0.71 Informational/ 
Explanatory 

61977 0.80 0.79 Informational/ 
Explanatory 56543 0.68 0.66 Informational/ 

Explanatory 

Average 0.78 0.76  Average 0.70 0.70  
 

For item 61971, in 6th grade, the decline in performance is negligible. However, for 11th grade items 
54155 and 54163, the decline of the generic model is about 4%. Again, we need to understand why 
the results are so much stronger for 6th grade than for 11th grade. We did not have enough items, per 
grade, to sample writing genres. Fourth grade items had a single Opinion/Argumentative prompt 
while the 11th grade items had five of them. And both of the items that had strong declines are 
Opinion/Argumentative prompts. 

Table 7.3 compares the results for prompt-specific models, generic models trained on five prompts 
and tested on three unseen prompts and when the generic model is trained and tested on all eight 
prompts. For the most part, generic models with unseen items have lower average QWKs than those 
with no unseen items. For 6th grade, the average difference was one half of a percent while for 11th 
grade the average difference in the QWK was 1%. 
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Table 7.16. Comparison of prompt-specific model, training of 5 items (with unseen items) and training on all 8 
items. 

Grade 6 Grade 11 

Item ID 

Combined 
Prompt 
Specific 
Model 

(Avg QWK) 

Combined 
Generic 
Model 

(Avg QWK) 

Train on All 
Prompts 

(Avg QWK) 
Item ID 

Combined 
Prompt 
Specific 
Model 

(Avg QWK) 

Combined 
Generic 
Model 

(Avg QWK) 

Train on All 
Prompts  

(Avg QWK) 

56561 0.66 0.72 0.71 54155 0.76 0.72 0.74 

61076 0.76 0.81 0.81 54163 0.74 0.70 0.71 

61462 0.78 0.78 0.78 54223 0.66 0.67 0.68 

61651 0.71 0.74 0.75 54729 0.68 0.70 0.72 

61827 0.73 0.76 0.76 56388 0.67 0.70 0.70 

61969 0.79 0.81 0.82 56396 0.69 0.69 0.70 

61971 0.82 0.81 0.82 56398 0.71 0.73 0.73 

61977 0.79 0.80 0.81 56543 0.66 0.68 0.69 

Average 0.76 0.78 0.78 Average 0.70 0.70 0.71 

 

However, overall, the generic models showed improvement over item-specific models. These results 
suggest that we can train a single model for each grade—instead of having to create a model for 
each item and still achieve better results compared to prompt specific models. 

Discussion 

From the above results based on QWK we can conclude that it is very likely that generic scoring 
methods outperform prompt-specific scoring methods, given a specific grade, in estimating the 
scores for trait C. The probable explanation for this affect is that when combining the training sets in 
generic scoring, the training model observes many more possible types of grammatical and 
convention related errors per given score point than it can find in a single item, and computes the 
classification parameters based on better knowledge of errors than it may encounter when being 
tested.  

In the cases where the training data for all of the items are available per given grade, the results in 
Table 7.3 also suggests that it is better to train one classifier model on multiple training items to 
evaluate the test sets compared to the item specific training for the same reasons as mentioned 
above. 

The two generic methods, namely (1) Generic model trained on five items and (2) Generic model 
trained on all eight items, have advantages over prompt-specific training in saving a significant 
amount of time for computing the classifier models and parameters, which in turn could be a very 
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cost-effective solution when training several items in terms of infrastructure expenses while, at the 
same time, delivering better results.  

As collecting training data is expensive, further research is needed to investigate at what point the 
learning curve flattens, and also to learn at what point there will be diminished returns from 
increasing the size of the training set. In addition, we need to learn whether the number of different 
items in the training data affect the results. Further research will also be focused on determining the 
cause of the differences in the results between 6th and 11th grades, based on the ranks of the 
independent strongest features in each of the grades. It will also be focused on investigating 
whether genre plays any significant role in determining the performance trend between generic and 
prompt-specific scoring.  
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