
 Smarter Balanced Reporting

Developer Guide

Developer Guide Page 1 of 17 Smarter Balanced Reporting (RFP 15)

Smarter Balanced Reporting (RFP 15)

Developer Guide

Prepared for:

by:

 Smarter Balanced Reporting

Developer Guide

Developer Guide Page 2 of 17 Smarter Balanced Reporting (RFP 15)

Approvals

Representing Date Author Status

Consortium Joe Willhoft

Consortium 2014.09.24 Brandt Redd Approved for Milestone 5

PMP 2014.09.24 Kevin King Endorsed for Milestone 5

Workgroup 2014.09.23 Henry King Endorsed for Milestone 5

Revision History

Revision Description Author/Modifier Date

Initial Release (DRAFT) Anna Grebneva (Amplify) 2014.07.09

 Smarter Balanced Reporting

Developer Guide

Developer Guide Page 3 of 17 Smarter Balanced Reporting (RFP 15)

Table of Contents

1 Summary

1.1 Audience

1.2 Assumptions

2 Setting up Development Environment

3 Running Smarter Web Application

3.1 Smarter Functionalities

3.2 Generating INI Configuration File

3.3 Configurations in INI file

3.4 Creating Edware Schema

3.5 Starting Smarter

3.6 Running Smarter Unit Tests

3.7 Generating Smarter Code Documentation

4 Running Universal Data Loader (UDL)

4.1 INI Configuration File

4.2 Configurations in INI file

4.3 Copying Decryption Keys

4.4 Starting UDL

4.5 Debugging UDL

4.6 Running UDL Tests

4.7 Generating UDL Code Documentation

5 Running EdMigrate

5.1 Generating INI Configuration File

5.2 Configurations in INI file

5.3 Starting EdMigrate

5.4 Running EdMigrate Unit Tests

5.5 Generating Edmigrate Code Documentation

 Smarter Balanced Reporting

Developer Guide

Developer Guide Page 4 of 17 Smarter Balanced Reporting (RFP 15)

1 Summary

Smarter Balanced Data Warehouse and Reporting system supports ingestion of student

assessment and student registration data, authentication with a SAML identity provider, and

visual display different representation of the ingested data through a web application in HTML,

CSV and PDF data formats.

The implementation is substantially in Python

1.1 Audience

This document is designed for developers that are familiar and have experience with:

● client-server web applications

● REST requests and responses in JSON data format

● authentication with SAML

1.2 Assumptions

This document is tailored towards Mac OS development environment. Many of our 3rd party

dependencies can be installed via brew on a Mac OS environment.

2 Setting up Development Environment

1. Install Python 3.3.0

You can download the installer from https://www.python.org/download/releases/3.3.0

If an earlier version of Python is already installed (2.6 or 2.7), you may also be able to

install Python 3.3 via “brew” (for Mac), “yum” (for Linux/CentOS), or “apt-get” (for

ubuntu/debian).

If installing from source, you must use “make alt-install”

After installation, please verify that the version is correct by running this command

python3 --version

Make sure that pip and virtualenv are installed with python. You can verify this by

checking that they exist in the bin directory of your python installation.

If they don’t exist, you can download and install them manually. virtualenv is available at

https://pypi.python.org/pypi/virtualenv/1.11 and pip is available at http://pypi.python.org/pypi/pip

2. Create and activate virtualenv

Python 3.3 doesn't usually have virtualenv included in it, because it has a built-in version

called pyenv

https://www.python.org/download/releases/3.3.0
https://pypi.python.org/pypi/virtualenv/1.11
http://pypi.python.org/pypi/pip

 Smarter Balanced Reporting

Developer Guide

Developer Guide Page 5 of 17 Smarter Balanced Reporting (RFP 15)

Important Note: if your machine has both Python 2.6/2.7 & Python 3.x , it is critical that

you don't use pip or ez_setup to install virtualenv because they will use the default

System Python in the process and thus implement a binding to the Python 2.x

interpreter. Instead, curl or wget the source package from PyPa for virtualenv and run

the virtualenv.py with the same syntax statement you have below, but using full local

paths, not relative paths to both the python and the destdir

virtualenv -p <python-exe-path> --distribute <dest-dir>

. <dest-dir>/bin/activate

You can verify pip and python is installed properly inside your virtual environment by

running these two commands:

(virtualenv) python --version

(virtualenv) pip freeze

3. Install Node.js and coffeescript (Only required for web application)

You can download and install node.js from http://nodejs.org/download/.

Make sure that npm command works after the installation.

You can now install coffeescript:

npm install -g coffee-script

4. Install xmlsec1 for SAML security verification (Only required for web application)

On a Mac, you can install from brew:

brew upgrade pkg-config

brew install xmlsec1

5. Install wkhtmltopdf and poppler for pdf generation (Only required for web application)

You can download and install from here: http://wkhtmltopdf.org/downloads.html

On a mac, you can install from brew:

 brew install wkhtmltopdf

http://nodejs.org/download/
http://wkhtmltopdf.org/downloads.html

 Smarter Balanced Reporting

Developer Guide

Developer Guide Page 6 of 17 Smarter Balanced Reporting (RFP 15)

 brew install poppler

6. Install gpg

You can download and install gpg1.4 from here: https://www.gnupg.org/download/

On a Mac, you can install from brew:

brew install gnupg

7. Install PostgreSQL

You can download PostgreSQL 9.2 from here: http://www.postgresql.org/download/

You can also download pgadmin, a graphical management tool for PostgresSQL, from

here: http://www.pgadmin.org/

8. Install RabbitMQ

You can download and install from here: http://www.erlang.org/download.html

On a Mac, you can install from brew:

brew install rabbitmq

9. Install Aptana IDE (optional)

You can download Aptana from here: http://www.aptana.com/products/studio3/download

You’ll need to set up your Python Interpreter in Aptana. Navigate to Preference →

PyDev → Interpreter - Python → New …

Enter edware as the interpreter name and set the Interpreter Executable to the path of

your python3 executable within your virtual environment, <dest-dir>/bin/python3

Python Pyramid is automatically installed when you run python setup-developer.py in the

smarter directory.

To configure to run Python Pyramid based web applications, Click on String Substitution

Variables → Add Variable

Enter name as pyramid_run and value of <dest-dir>/bin/pserve

https://www.gnupg.org/download/
http://www.postgresql.org/download/
http://www.pgadmin.org/
http://www.erlang.org/download.html
http://www.aptana.com/products/studio3/download

 Smarter Balanced Reporting

Developer Guide

Developer Guide Page 7 of 17 Smarter Balanced Reporting (RFP 15)

Apply and Click on OK to save your changes.

You’ll also need to add a new Run Configuration to run Pyramid applications.

Navigate to Run → Run Configurations. Add a new configuration called smarter. In

Main Module, enter ${pyramid_run} and Click on Arguments tab and add the following to

the program arguments, ../config/development.ini

3 Running Smarter Web Application

Smarter is a web application written in Python and Coffeescript. It is written using Pyramid web

framework and can be run locally via pserve. The application requires an INI configuration file

to run. Smarter needs to authenticate with an Identity Provider, such a OpenAM, using SAML

2.0. Client side source code is written in Coffeescript, which requires to be pre-compiled to

Javascript. We use node.js libraries to pre-compile, minify, and watch for coffeescript and less

file changes in the <repo>/smarter/assets directory.

3.1 Smarter Functionalities

● Web-based Reports

○ Comparing Populations at State Level, District Level, School Level

○ List of Students Report

○ Individual Student Report

● Print-Friendly Formatted Reports

○ PDF version of Individual Student Report

○ 508 Compliant csv Extract of Comparing Populations Report

○ Student Assessment Extracts in JSON and csv

○ Student Registration Statistics and Completeness csv Report

● Pre-Generation

○ PDF pre-generation

○ Cache warmer

3.2 Generating INI Configuration File

Smarter reads an INI file when the application starts up. A basic version of this INI configuration

can be generated by the following commands, which builds an INI file based on values defined

in settings.yaml. First, you should install the required python dependencies.

(virtualenv) cd <repo>/config

(virtualenv) python setup.py develop

Next, generate the ini file,

(virtualenv) python generate_ini.py -e development

 Smarter Balanced Reporting

Developer Guide

Developer Guide Page 8 of 17 Smarter Balanced Reporting (RFP 15)

An INI file, development.ini, will be generated in the config directory. You can edit this file

directly if you need to make any configuration changes. Alternatively, you can make permanent

changes inside settings.yaml.

3.3 Configurations in INI file

Below is a list of commonly configured settings that should be modified depending on your

environment

Configuration Description

auth.saml.idp_server_login_url This is the SSO login URL that Smarter will
redirect to when user isn’t authenticated.
This URL should be an URL provided by your
SAML Identity Provider.

auth.saml.idp_server_logout_url This is the logout URL that Smarter will
redirect to when an authenticated user wants
to log out.

auth.saml.issuer_name This is your Service Provider identification
name used in SAML Requests.

auth.saml.name_qualifier This is your Identity Provider identification
name used in SAML Requests.

edware.db.[tenant_name].url This is the URL to your database server. The
format of this URL is:
postgresql+psycopg2://user:password@hostname
:port/databaseName

The tenant_name can be any string, but this
must match the tenant_name that is provided
by SSO.

edware.db.[tenant_name].schema_name This is the name of the schema that hosts the
data.

edware.db.[tenant_name].state_code This is the state code that the tenant is
hosting. ex. CA

edware_stats.db.schema_name The schema name of the stats database
server. (This database is used to record
statistics of batch jobs that were migrated and
is used in Smarter to trigger pre-generation of
pdfs and pre-caching)

 Smarter Balanced Reporting

Developer Guide

Developer Guide Page 9 of 17 Smarter Balanced Reporting (RFP 15)

edware_stats.db.url The database url of the stats database
server. The format of this URL is:
postgresql+psycopg2://user:password@hostname
:port/databaseName

3.4 Creating Edware Schema

You’ll need to create a schema to host the data that Smarter will query from. First, you need to

install python dependencies.

(virtualenv) cd <repo>/edschema

(virtualenv) python setup.py develop

Next, create an empty schema into your database.

(virtualenv) cd <repo>/edschema/edschema

(virtualenv) python metadata_generator.py -s <schemaName> -m edware -d

<databaseName> --host <hostname:port> -u <user> -p <password>

You can now import our test data into your database.

(virtualenv) cd <repo>/test_utils

(virtualenv) python import_data.py -c <repo>/config/development.ini -i <tenant> -s

<stateCode> -n <stateName>

ex. python import_data.py -c <repo>/config/development.ini -i cat -s NC - “North Carolina”

Note: import_data.py reads the database configuration for your tenant from the INI file that

you’ve generated previously

3.5 Starting Smarter

You’ll first need to install all python dependencies that Smarter uses.

(virtualenv) cd <repo>/smarter

(virtualenv) python setup-developer.py develop

At this point, you’re ready to start the server. You can either start it with Aptana, by hitting Run

using the Run configuration that you have set up previously, or on a terminal, you can issue the

command:

(virtualenv) cd <repo>/config

(virtualenv) pserve development.ini

 Smarter Balanced Reporting

Developer Guide

Developer Guide Page 10 of 17 Smarter Balanced Reporting (RFP 15)

At this point, your server should be running on port 6543. You can navigate to this URL on your

browser, http://localhost:6543/assets/public/landing.html and should be able to see the login

landing page.

Next, you can click on the Login Button and that should redirect you to your Identity Provider’s

login page. After logging in, you should be able to view the Comparing Population Report.

At this point, you’ve confirmed that Smarter web application is running.

3.6 Running Smarter Unit Tests

Smarter has a suite of Unit Tests that you can run. First, you’ll need to install dependencies in

your virtual environment.

http://localhost:6543/assets/public/landing.html

 Smarter Balanced Reporting

Developer Guide

Developer Guide Page 11 of 17 Smarter Balanced Reporting (RFP 15)

(virtualenv) pip install nose

(virtualenv) pip install coverage

(virtualenv) pip install nose-cov

At this point, you’re ready to run the unit tests.

(virtualenv) cd <repo>/smarter

(virtualenv) nosetests

3.7 Generating Smarter Code Documentation

Smarter uses a Python utility library, Sphinx, to generate its documentation. To generate code

documentations, you’ll first need to install dependencies in your virtual environment.

(virtualenv) cd <repo>/smarter

(virtualenv) python setup.py docs

Next, you can generate the html version of the documentation

(virtualenv) cd <repo>/smarter/docs

(virtualenv) make html

To view the documentation, navigate to

http://localhost/<pathToRepo>/smarter/docs/_build/html/index.html

4 Running Universal Data Loader (UDL)

UDL is responsible for ingesting a CSV/JSON pair of files. Currently, UDL supports two types of

ingestion: student assessment and student registration. Please refer to our data dictionary

documentation for the formats of these files.

Some basic concepts of UDL:

● Each tenant has its own landing zone for file drop off

● UDL loads CSV into the database via PostgreSQL dblink extension

● Each CSV goes through the pipeline of CSV → staging database → integration

database → pre-prod database

4.1 INI Configuration File

UDL reads an INI file during application startup. A basic version of this INI configuration can be

generated by the following commands, which constructs an INI file based on values defined in

udl2_conf.yaml. You’ll first need to install python dependencies (if you haven’t done so

previously).

http://localhost/

 Smarter Balanced Reporting

Developer Guide

Developer Guide Page 12 of 17 Smarter Balanced Reporting (RFP 15)

(virtualenv) cd <repo>/config

(virtualenv) python setup.py develop

4.2 Configurations in INI file

Below is a list of commonly configured settings that should be modified depending on your

environment

Configuration Description

udl2_db_conn.url This is the URL to your UDL staging,
integration & stats database server. The
format of this URL is:
postgresql+psycopg2://user:password@hostname
:port/databaseName

Due to the usage of foreign data wrapper, this
database server must reside in the same
machine as where UDL celery workers are
running from

target_db_conn.[tenant].url This is the URL to your pre-production
database server.

Tenant can be any string. When a tenant
target database connection is set, a
corresponding production database
connection must be present in INI file.

prod_db_conn.[tenant].url This is the URL to your production database
server.

prod_db_conn.[tenant].db_schema This is the schema name for your production
database. This schema must exist when UDL
starts up.

edware_stats.db.schema_name The schema name of the stats database
server. (This database is used to record
statistics of batch jobs in UDL and will be
used in EdMigrate to handle migration)

edware_stats.db.url The database url of the stats database
server. The format of this URL is:
postgresql+psycopg2://user:password@hostname
:port/databaseName

logging.audit This is the path used for logging.

 Smarter Balanced Reporting

Developer Guide

Developer Guide Page 13 of 17 Smarter Balanced Reporting (RFP 15)

4.3 Copying Decryption Keys

UDL needs to decrypt data files, and we have supplied the corresponding decryption keys that

are used to decrypt our test data files.

Three Files are supplied:

File Name Description

secring.gpg Lock file for secret keyring (Private keyring)

pubring.gpg Public keyring

trustdb.gpg Trust database

You’ll need to copy the keys to your gpg home directory:

cp <repo>/edudl2/edudl2/tests/data/keys/* ~/.gnupg/

If you need to encrypt your own data files, here are some sample commands to tar and encrypt

the file.

tar -cvzf test_data.tar.gz --disable-copyfile file1 file2

gpg --armor --local-user ca_user@ca.com --recipient sbac_data_provider@sbac.com --

encrypt --sign test_data.tar.gz

4.4 Starting UDL

To utilize the generic development environment’s configuration, you’ll need to create a pre-

production database named edware, and a database user named, edware with password of

edware2013. As well, you’ll need to create a UDL database using the user udl2, and you can

also name the database as udl2. These are the default configuration, you may configure your

environment with other values, but you’ll need to make sure that you update the INI file and/or

udl2_conf.yaml.

You can connect to postgres via pgAdmin, and create a database and user through the user

interface.

After you’ve created a database and user, you can begin and set up UDL dependencies.

(virtualenv) cd <repo>/edudl2

(virtualenv) python setup-developer.py develop

 Smarter Balanced Reporting

Developer Guide

Developer Guide Page 14 of 17 Smarter Balanced Reporting (RFP 15)

Please make sure that RabbitMQ is already running. You will now generate an INI file, initialize

the UDL database, and start celery worker. Note that the script below will always re-generate

an INI file, therefore if any configurations need to be overwritten, please make sure that they’re

done in udl2_conf.yaml.

(virtualenv) cd <repo>/edudl2/scripts

(virtualenv) ./start_local_udl.sh

You can verify that the workers have started by running:

ps -ef|grep celery

To initiate UDL pipeline to process the file, you’ll first need to copy a .tar.gz.gpg file into the

arrival zone of a tenant. You can copy an example from the test data.

mkdir -p /opt/edware/zones/landing/arrivals/[tenant]

cp <repo>/edudl2/edudl2/tests/data/test_data_latest/*.tar.gz.gpg

/opt/edware/zones/landing/arrivals/[tenant]

Next, you’ll have to invoke UDL to process your file

(virtualenv) cd <repo>/edudl2/scripts

(virtualenv) python driver.py -a /opt/edware/zones/landing/arrivals/[tenant]/[nameOfFile]

There are a few verification that you can check for each ingestion job:

1. Check UDL logs

The logs are located in /opt/edware/log/udl2.error.log

2. Check udl_batch table inside UDL database

You should look for the row with UDL_COMPLETE as SUCCESS

3. Check that a new schema has been created in your pre-production database, and that

the tables are populated with data.

4.5 Debugging UDL

UDL supports a development mode that allows developers to debug the source code. In your

IDE, Aptana, you can add a run configuration for UDL with program arguments of --dev running

main module edudl2/scripts/driver.py. Note: you may need to override the default tenant name

with -t [tenant]

 Smarter Balanced Reporting

Developer Guide

Developer Guide Page 15 of 17 Smarter Balanced Reporting (RFP 15)

Under development mode, it will copy a file to the landing zone for you to a default tenant

named ‘cat’ (Note: If you’re using the default tenant, you will need to make sure that the

database configuration for that tenant exists in your INI file)

You should be able to set a breakpoint in the code base and start debugging.

4.6 Running UDL Tests

UDL has a suite of tests that you can run. First, you’ll need to install dependencies in your

virtual environment (if you haven’t already done so).

(virtualenv) pip install nose

(virtualenv) pip install coverage

(virtualenv) pip install nose-cov

At this point, you’re ready to run the unit tests.

(virtualenv) cd <repo>/edudl2

(virtualenv) nosetests

4.7 Generating UDL Code Documentation

Smarter uses a Python utility library, Sphinx, to generate its documentation. To generate code

documentations, you’ll first need to install dependencies in your virtual environment.

(virtualenv) cd <repo>/edudl2

(virtualenv) python setup.py docs

Next, you can generate the html version of the documentation

(virtualenv) cd <repo>/edudl2/docs

(virtualenv) make html

To view the documentation, navigate to

http://localhost/<pathToRepo>/edudl/docs/_build/html/index.html

5 Running EdMigrate

When we receive new data through UDL, we want to minimize disturbance and outages to

Smarter Web Application. In a production environment, we will migrate data from pre-

production to production database on a scheduled basis. During this migration, we will rotate a

group of database slaves out to replicate such that we can minimize any performance

deterioration. In a local development environment, we can only test the actual data migration.

Testing of slaves being detached from PGPool is out of scope in a local environment setting.

http://localhost/

 Smarter Balanced Reporting

Developer Guide

Developer Guide Page 16 of 17 Smarter Balanced Reporting (RFP 15)

5.1 Generating INI Configuration File

EdMigrate reads an INI file on start up. A basic version of this INI configuration can be

generated by the following commands, which builds an INI file based on values defined in

settings.yaml. First, you should install python dependencies that we need.

(virtualenv) cd <repo>/config

(virtualenv) python setup.py develop

Next, generate the ini file,

(virtualenv) python generate_ini.py -e development

An INI file, development.ini, will be generated in the config directory.

5.2 Configurations in INI file

Below is a list of commonly configured settings that should be modified depending on your

environment

Configuration Description

migrate_dest.db.[tenant].schema_name The schema name of the destination
database server (ie. production database
server)

migrate_dest.db.[tenant].url The database url of the destination database
server. The format of this URL is:
postgresql+psycopg2://user:password@hostname
:port/databaseName

migrate_source.db.[tenant].url The database url of the source database
server. (ie. pre-production database server)

edware_stats.db.schema_name The schema name of the stats database
server. (This database is used to record
statistics of batch jobs in UDL, EdMigrate,
and Smarter)

edware_stats.db.url The database url of the stats database
server. The format of this URL is:
postgresql+psycopg2://user:password@hostname
:port/databaseName

5.3 Starting EdMigrate

You’ll first need to install all python dependencies that EdMigrate uses.

(virtualenv) cd <repo>/edmigrate

 Smarter Balanced Reporting

Developer Guide

Developer Guide Page 17 of 17 Smarter Balanced Reporting (RFP 15)

(virtualenv) python setup-developer.py develop

Next, you’ll need to start main.py

(virtualenv) cd <repo>/edmigrate/edmigrate

(virtualenv) python main.py --migrateOnly -i <repo>/config/development.ini

The migration script will look for migration candidates inside udl_stats table of edware_stats

database for any rows that have a status of ‘udl.ingested’. EdMigrate will move data from

destination database (pre-prod) using the schema name of the corresponding batch_guid value

into source database (prod).

5.4 Running EdMigrate Unit Tests

EdMigrater has a suite of unit tests that you can run. First, you’ll need to install dependencies in

your virtual environment (if you haven’t already done so).

(virtualenv) pip install nose

(virtualenv) pip install coverage

(virtualenv) pip install nose-cov

At this point, you’re ready to run the unit tests.

(virtualenv) cd <repo>/edmigrate

(virtualenv) nosetests

5.5 Generating Edmigrate Code Documentation

Smarter uses a Python utility library, Sphinx, to generate its documentation. To generate code

documentations, you’ll first need to install dependencies in your virtual environment.

(virtualenv) cd <repo>/edmigrate

(virtualenv) python setup.py docs

Next, you can generate the html version of the documentation

(virtualenv) cd <repo>/edmigrate/docs

(virtualenv) make html

To view the documentation, navigate to

http://localhost/<pathToRepo>/edmigrate/docs/_build/html/index.html

http://localhost/

